Skip to main content
Log in

Multiple anthropogenic pressures and local environmental gradients in ponds governing the taxonomic and functional diversity of epiphytic macroinvertebrates

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Anthropogenic activities alter community composition, diversity and functioning of macroinvertebrate communities in freshwater ecosystems. Especially threatened are pond ecosystems, given their small size, low protection, and typically high connection to adjacent agricultural lands and urban areas. Most of the existing research, however, focuses on benthic macroinvertebrates while the evidence for epiphytic macroinvertebrates is strongly limited. Here we tested the effects of different anthropogenic activities on abundance, taxonomic and functional diversity, and composition of epiphytic macroinvertebrates in ponds along the gradients of local environmental factors. We found that all types of anthropogenic activities had negative impact on abundance, and on both taxonomic and functional diversity, and altered taxonomic and functional composition of epiphytic macroinvertebrates. Among the local environmental factors, macrophyte growth forms governed diversity and community composition, having positive effects on the taxonomic diversity, but allowing only a narrow spectrum of macroinvertebrate functional traits to persist on a single growth form of macrophytes. Fish predation was an important determinant of functional diversity of epiphytic macroinvertebrates. Our findings suggest that management strategies aimed to maintain high levels of biodiversity in ponds should be directed towards reducing the level of anthropogenic pressure, while ensuring the presence of distinct macrophyte growth forms in ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed here are available from the corresponding author upon reasonable request.

References:

  • Andersen, T., P. S. Cranston & J. H. Epler, 2013. Chironomidae of the Holarctic Region: keys and diagnoses: larvae. Scandinavian Society of Entomology 61: 571.

    Google Scholar 

  • APHA, 1999. Standard Methods for the Examination of Water and Wastewater, 9th ed. American Public Health Association, Washington.

    Google Scholar 

  • Arimoro, F. O. & R. B. Ikomi, 2008. Response of macroinvertebrate communities to abattoir wastes and other anthropogenic activities in a municipal stream in the Niger Delta, Nigeria. Environmentalist 28: 85–98.

    Article  Google Scholar 

  • Bartoń, K., 2022. MuMIn: Multi-Model Inference. R package version 1.46.0. https://CRAN.R-project.org/package=MuMIn

  • Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  • Bauernfeind, E. & U. Humpesch, 2001. Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ӧkologie, Verlag des Naturhistorischen Museums, Wien.

    Google Scholar 

  • Benzina, I., A. S. Bachir, F. Santoul & R. Céréghino, 2021. Macroinvertebrate functional trait responses to environmental gradients and anthropogenic disturbance in arid-land streams of North Africa. Journal of Arid Environments 195: 104626.

    Article  Google Scholar 

  • Biggs, J., P. Williams, P. N. Whitfield & A. Weatherby, 2005. 15 years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 693–714. https://doi.org/10.1002/aqc.745.

    Article  Google Scholar 

  • Biggs, J., S. von Fumetti & M. Kelly-Quinn, 2017. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793: 3–39. https://doi.org/10.1007/s10750-016-3007-0.

    Article  Google Scholar 

  • Brönmark, C. & L.-A. Hansson, 2002. Environmental issues in lakes and ponds: current state and perspectives. Environmental Conservation 29: 290–307. https://doi.org/10.1017/S0376892902000218.

    Article  CAS  Google Scholar 

  • Bruno, D., O. Belmar, A. Maire, A. Morel, B. Dumont & T. Datry, 2019. Structural and functional responses of invertebrate communities to climate change and flow regulation in alpine catchments. Global Change Biology 25: 1612–1628. https://doi.org/10.1111/gcb.14581.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzhdygan, O. Y., M. Stojković Piperac, O. Stamenković, D. Čerba, A. Ostojić, B. Tietjen & D. Milošević, 2022. Human impact induces shifts in trophic composition and diversity of consumer communities in small freshwater ecosystems. In Pešić, V., D. Milošević & M. Miliša (eds), Small Water Bodies of the Western Balkans Springer, Cham: 389–418. https://doi.org/10.1007/978-3-030-86478-1_18.

    Chapter  Google Scholar 

  • Céréghino, R., V. D. Pillar, D. S. Srivastava, et al., 2018. Constraints on the functional trait space of aquatic invertebrates in bromeliads. Functional Ecology 32: 2435–2447. https://doi.org/10.1111/1365-2435.13141.

    Article  Google Scholar 

  • Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Cremona, F., D. Planas & M. Lucotte, 2008. Biomass and composition of macroinvertebrate communities associated with different types of macrophyte architectures and habitats in a large fluvial lake. Fundamental and Applied Limnology 171: 119.

    Article  Google Scholar 

  • Davies, B., J. Biggs, P. Williams, M. Whitfield, P. Nicolet, D. Sear, S. Bray & S. Maund, 2008. Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agriculture, Ecosystems and Environment 125: 1–8.

    Article  Google Scholar 

  • Della Bella, V. & L. Mancini, 2009. Freshwater diatom and macroinvertebrate diversity of coastal permanent ponds along a gradient of human impact in a Mediterranean eco-region. Hydrobiologia 364: 25–41. https://doi.org/10.1007/s10750-009-9890-x.

    Article  Google Scholar 

  • Della Bella, V., M. Bazzanti & F. Chiarotti, 2005. Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 583–600. https://doi.org/10.1002/aqc.743.

    Article  Google Scholar 

  • Desrosiers, M., P. Usseglio-Polatera, V. Archaimbault, F. Larras, G. Méthot & B. Pinel-Alloul, 2019. Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates. Science of the Total Environment. 649: 233–246.

    Article  CAS  PubMed  Google Scholar 

  • Díaz, A. M., M. L. S. Alonso & M. R. V. A. Gutiérrez, 2008. Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshwater Biology 53: 1–21. https://doi.org/10.1111/j.1365-2427.2007.01854.x.

    Article  Google Scholar 

  • Diehl, S. & R. Kornijów, 1998. The influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In Jeppensen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Macrophytes in Lakes Springer, New York: 24–46.

    Chapter  Google Scholar 

  • Dolédec, S. & B. Statzner, 2008. Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freshwater Biology 53: 617–634. https://doi.org/10.1111/j.1365-2427.2007.01924.x.

    Article  Google Scholar 

  • Dolédec, S., N. Phillips, M. Scarsbrook, R. H. Riley & C. R. Townsend, 2006. Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25: 44–60.

    Article  Google Scholar 

  • Dolédec, S., L. Simon, J. Blemus, A. Rigal, J. Robin & F. Mermillod-Blondin, 2021. Multiple stressors shape invertebrate assemblages and reduce their trophic niche: a case study in a regulated stream. Science of the Total Environment 773: 145061. https://doi.org/10.1016/j.scitotenv.2021.145061.

    Article  CAS  PubMed  Google Scholar 

  • Eiseler, B., 2005. Bildbestimmungsschlusselfür die Eintagsfliegenlarven der deutschen Mittelgebirge und des Tieflandes (Identification key to the mayfly larvae of the German Highlands und Lowlands). Lauterbornia 53: 1–112.

    Google Scholar 

  • Elliot, J. & U. Humpesch, 2010. Mayfly larvae (Ephemeroptera) of Britain and Ireland: Keys and Review of their Ecology. Freshwater Biological Association, Ambleside.

  • Elliot, J., U. Humpesch & T. Macan, 1988. Larvae of the British Ephemeroptera: A Key with Ecological Notes. FBA Scientific Publication.

  • Ferreiro, N., C. Feijoó, A. Giorgi & L. Leggieri, 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664: 199–211. https://doi.org/10.1007/s10750-010-0599-7.

    Article  Google Scholar 

  • Fox, J. & S. Weisberg, 2019. An R Companion to Applied Regression, 3rd ed. Sage, Thousand Oaks.

    Google Scholar 

  • Gerken, B. & K. Sternberg, 1999. Die Exuvien Europäischer Libellen (Insecta, Odonata). The exuviae of European dragonflies. Arnika & Eisvogel, Höxter, Jena.

  • Glöer, P., 2002. Die süẞwassergastropoden Nord- und Mitteleuropas. Bestimmungsschlüssel, Lebenweise, Verbreitung. Zbirka Die tierwelt Deutschlands. Založba Conchbooks, Bonn.

  • Goodwin, K., N. Caraco & J. Cole, 2008. Temporal dynamics of dissolved oxygen in a floating-leaved macrophyte bed. Freshwater Biology 53: 1632–1641. https://doi.org/10.1111/j.1365-2427.2008.01983.x.

    Article  CAS  Google Scholar 

  • Gosselain, V., C. Hudon, A. Cattaneo, P. Gagnon, D. Planas & D. Rochefort, 2005. Physical variables driving epiphytic algal biomass in a dense macrophyte bed of the St. Lawrence River (Quebec, Canada). Hydrobiologia 534: 11–22.

    Article  Google Scholar 

  • Habib, S. & A. R. Yousuf, 2015. Effects of macrophyte on Phytophilous macroinvertebrate community: a review. Journal of Entomology and Zoology Studies 3: 377–384.

    Google Scholar 

  • Han, Z. & B. Cui, 2016. Development of an integrated stress index to determine multiple anthropogenic stresses on macrophyte biomass and richness in ponds. Ecological Engineering 90: 151–162. https://doi.org/10.1016/j.ecoleng.2016.01.051.

    Article  Google Scholar 

  • Heino, J., H. Mykrä, J. Kotanen & T. Muotka, 2007. Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path? Ecography 30: 217–230. https://doi.org/10.1111/j.2007.0906-7590.04894.x.

    Article  Google Scholar 

  • Hill, M. J., J. Heino, J. C. White & D. B. P. J. RyvesWood, 2019. Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape. Biological Conservation 237: 348–357. https://doi.org/10.1016/j.biocon.2019.07.015.

    Article  Google Scholar 

  • Jiang, W., B. Pan, X. Jiang, P. Shi, P. Zhu, L. Zhang, J. Chen & N. Wu, 2021. A comparative study on the indicative function of species and traits structure of stream macroinvertebrates to human disturbances. Ecological Indicators 129: 107939.

    Article  Google Scholar 

  • Josifović, M. (ed.), 1970–1980. Flora of the Socialist Republic of Serbia, I-X. Belgrade: SANU. (In Serbian)

  • Kubová, N. & J. Schenková, 2014. Tolerance, optimum ranges and ecological requirements of free-living leech species (Clitellata: Hirudinida). Fundamental and Applied Limnology 185: 167–180.

    Article  Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  PubMed  Google Scholar 

  • Laliberté, E., P. Legendre & B. Shipley, 2014. Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package. Version 1.0–12. https://cran.r-project.org/package=FD

  • Li, Z., J. Wang, Z. Liu, X. Meng, J. Heino, X. Jiang, X. Xiong, X. Jiang & Z. Xie, 2019. Different responses of taxonomic and functional structures of stream macroinvertebrate communities to local stressors and regional factors in a subtropical biodiversity hotspot. Science of the Total Environment 655: 1288–1300.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Z. Li, D. M. P. Castro, X. Tan, X. Jiang, X. Meng, Y. Ge & Z. Xie, 2021. Effects of different types of land-use on taxonomic and functional diversity of benthic macroinvertebrates in a subtropical river network. Environmental Science and Pollution Research 28: 44339–44353. https://doi.org/10.1007/s11356-021-13867-w.

    Article  PubMed  Google Scholar 

  • López, D. P. & A. L. Freestone, 2021. History of co-occurrence shapes predation effects on functional diversity and structure at low latitudes. Functional Ecology 35: 535–545. https://doi.org/10.1111/1365-2435.13725.

    Article  CAS  Google Scholar 

  • MacArthur, R. & E. O. Wilson, 1967. The Theory of Island Biogeography, Princeton University Press, Princeton.

    Google Scholar 

  • Mason, N. W. H., D. Mouillot, W. G. Lee & J. B. Wilson, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118. https://doi.org/10.1111/j.0030-1299.2005.13886.x.

    Article  Google Scholar 

  • McAbendroth, L., P. M. Ramsay, A. Foggo, S. D. Rundle & D. T. Bilton, 2005. Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111: 279–290. https://doi.org/10.1111/j.0030-1299.2005.13804.x.

    Article  Google Scholar 

  • Moller Pillot, H., 1984a. De larven der Nederlandse Chironomidae (Diptera). 1A: Inleiding, Tanypodinae en Chironomini, St. E.I.S Nederland, Leiden.

  • Moller Pillot, H., 1984b. De larven der Nederlandse Chironomidae (Diptera). 1B: Orthocladiinae sensu lato. St. E.I.S. Nederland, Leiden.

  • Moller Pillot, H., 2009. Chironomidae Larvae. Biology and Ecology of Chironomini, KNNV Publishing, Zeist.

    Book  Google Scholar 

  • Mouchet, M. A., S. Villéger, N. W. H. Mason & D. Mouillot, 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x.

    Article  Google Scholar 

  • Naeem, S. & J. P. Wright, 2003. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters 6: 567–579. https://doi.org/10.1046/j.1461-0248.2003.00471.x.

    Article  Google Scholar 

  • Nicacio, G., E. J. Cunha, N. Hamada & L. Juen, 2020. How habitat filtering can affect taxonomic and functional composition of aquatic insect communities in small Amazonian streams. Neotropical Entomology 49: 652–661. https://doi.org/10.1007/s13744-020-00780-z.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, A., 1997. Aquatic Insects of North Europe. A Taxonomic Handbook. Odonata Diptera. Volume 2. Apollo Books, Stenstrup.

  • Oertli, B. & K. M. Parris, 2019. Review: toward management of urban ponds for freshwater biodiversity. Ecosphere 10: e02810. https://doi.org/10.1002/ecs2.2810.

    Article  Google Scholar 

  • Oertli, B., D. Auderset Joye, E. Castella, R. Juge & J-B. Lachavanne, 2000. Biological diversity and ecological typology of ponds and small lakes in Switzerland. Swiss Agency for the Environment, Forests and Landscape, Laboratory of Ecology and Aquatic Biology, University of Geneva, Geneva. (In French)

  • Oksanen, J., G. Simpson, F. Blanchet, R. Kindt, P. Legendre, P. Minchin, R. O'Hara, P. Solymos, M. Stevens, E. Szoecs, H. Wagner, M. Barbour, M. Bedward, B. Bolker, D. Borcard, G. Carvalho, M. Chirico, M. De Caceres, S. Durand, H. Evangelista, R. FituJohn, M. Friendlz, B. Furneaux, G. Hannigan, M. Hill, L. Lahti, D. McGlinn, M. Ouellette, E. Ribeiro Cunha, T. Smith, A. Stier, C. Ter Braak & J. Weedon, 2022. vegan: Community Ecology Package. R package version 2.6-2, https://CRAN.R-project.org/package=vegan

  • Pallottini, M., D. Cappelletti, A. Fabrizi, E. Gaino, E. Goretti, R. Selvaggi & R. Céréghino, 2017. Macroinvertebrate functional trait responses to chemical pollution in agricultural-industrial landscapes. River Research and Applications 33: 505–513. https://doi.org/10.1002/rra.310.

    Article  Google Scholar 

  • Paz, L. E., M. Rodriguez, B. Gullo & A. R. Capítulo, 2022. Impacts of urban and industrial pollution on functional traits of benthic macroinvertebrates: are some traits advantageous for survival? Science of the Total Environment 807: 150650. https://doi.org/10.1016/j.scitotenv.2021.150650.

    Article  CAS  PubMed  Google Scholar 

  • Pfleger, V., 2000. Field Guide in Colour to Molluscs. UK edition. Silverdale Books.

  • Pielou, E., 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131–144.

    Article  Google Scholar 

  • QGIS Development Team, 2021. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • R Core Team, 2022. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rossaro, B. & V. Lencioni, 2015. A key to larvae of Diamesa Meigen, 1835 (Diptera, Chironomidae), well known as adult males and pupae from Alps (Europe). Journal of Entomological and Acarological Research 47: 123–138.

    Article  Google Scholar 

  • Roy, A. H., A. D. Rosemond, M. J. Paul, D. S. Leigh & J. B. Wallace, 2003. Stream macroinvertebrate response to catchment urbanisation (Georgia, U.S.A.). Freshwater Biology 48: 329–346.

    Article  Google Scholar 

  • Schäfer, R. B., T. Caquet, K. Siimes, R. Mueller, L. Lagadic & M. Liess, 2007. Effects of pesticides on community structure and ecosystems functions in agricultural streams of three biogeographical regions in Europe. Science of the Total Environment 382: 272–285.

    Article  PubMed  Google Scholar 

  • Schmid, P., 1993. A key to the larval Chironomidae and their instars from Austrian Danube Region streams and rivers. Part 1. Diamesinae, Prodiamesinae and Orthocladiinae. Federal Institute for Water Quality of the Ministry of Agriculture and Forestry, Wien.

  • Shannon, C. E. & W. Weaver, 1963. The Mathematical Theory of Communication, Illinois University Press, Urbana.

    Google Scholar 

  • Simpson, E. H., 1949. Measurement of diversity. Nature 163: 688. https://doi.org/10.1038/163688a0.

    Article  Google Scholar 

  • Solimini, A.G., G. Free, I. Donohue, K. Irvine, M. Pusch, B. Rossaro, L. Sandin & A.C. Cardoso, 2006. Using benthic macroinvertebrates to assess ecological status of lakes Current knowledge and way forward to support WFD implementation. Report EUR 22347 for the European Commission, Institute for Environment and Sustainability. Office for Official Publications of the EC, Luxembourg.

  • Southwood, T. R., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–365.

    Article  Google Scholar 

  • Stamenković, O., M. Stojković Piperac, D. Milošević, O. Y. Buzhdygan, A. Petrović, D. Jenačković, A. Ðurđević, D. Čerba, B. Vlaičević, D. Nikolić & V. Simić, 2019. Anthropogenic pressure explains variations in the biodiversity of pond communities along environmental gradients: a case study in south-eastern Serbia. Hydrobiologia 838: 65–83. https://doi.org/10.1007/s10750-019-03978-4.

    Article  CAS  Google Scholar 

  • Stamenković, O., V. Simić, M. Stojković Piperac, D. Milošević, S. Simić, A. Ostojić, N. Đorđević, D. Čerba, A. Petrović, D. Jenačković Gocić, A. Đurđević, M. Koh & O. Y. Buzhdygan, 2021. Direct, water-chemistry mediated, and cascading effects of human-impact intensification on multitrophic biodiversity in ponds. Aquatic Ecology 55: 187–214. https://doi.org/10.1007/s10452-020-09822-5.

    Article  CAS  Google Scholar 

  • Stamenković, O., M. Stojković Piperac, D. Čerba, D. Milošević, A. Ostojić, N. B. Đorđević, S. B. Simić, D. Cvijanović & O. Y. Buzhdygan, 2022. Taxonomic and functional aspects of diversity and composition of plankton communities in shallow lentic ecosystems along the human-impact and environmental gradients. Aquatic Sciences 84: 57. https://doi.org/10.1007/s00027-022-00893-0.

    Article  Google Scholar 

  • Sun, Z., J. E. Brittain, E. Sokolova, H. Thygesen, S. J. Saltveit, S. Rauch & S. Meland, 2018. Aquatic biodiversity in sedimentation ponds receiving road runoff—What are the key drivers? Science of The Total Environment 610–611: 1527–1535. https://doi.org/10.1016/j.scitotenv.2017.06.080.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., E. Sokolova, J. E. Brittain, S. J. Saltveit, S. Rauch & S. Meland, 2019. Impact of environmental factors on aquatic biodiversity in roadside stormwater ponds. Scientific Reports 9: 5994. https://doi.org/10.1038/s41598-019-42497-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornhill, I. A., J. Biggs, M. J. Hill, R. Briers, D. Gledhill, P. J. Wood, J. H. R. Gee, M. Ledger & C. Hassall, 2018. The functional response and resilience in small waterbodies along land-use and environmental gradients. Global Change Biology 24: 3079–3092. https://doi.org/10.1111/gcb.14149.

    Article  PubMed  Google Scholar 

  • Timm, T., 1999. Eestirõngusside (Annelida) määraja. A Guide to the Estonian Annelidae, Estonian Academy Publishers, Tartu-Tallinn.

    Google Scholar 

  • Trigal, C., F. García-Criado & C. Fernández-Aláez, 2007. Macroinvertebrate communities of Mediterranean ponds (North Iberian Plateau): importance of natural and human-induced variability. Freshwater Biology 52: 2042–2055. https://doi.org/10.1111/j.1365-2427.2007.01805.x.

    Article  Google Scholar 

  • Trigal, C., F. García-Criado & C. Fernández-Aláez, 2009. Towards a multimetric index for ecological assessment of Mediterranean flatland ponds: the use of macroinvertebrates as bioindicators. Hydrobiologia 618: 109–123. https://doi.org/10.1007/s10750-008-9569-8.

    Article  CAS  Google Scholar 

  • Trigal, C., C. Fernandez-Alaez & M. Fernandez-Alaez, 2014. Congruence between functional and taxonomic patterns of benthic and planktonic assemblages in flatland ponds. Aquatic Sciences 76: 61–72. https://doi.org/10.1007/s00027-013-0312-9.

    Article  CAS  Google Scholar 

  • Tutin, T. G., V. H. Heywood, N. A. Burges, D. H. Valentine, S. M. Walters & D. A. Webb (eds), 1964–1980. Flora Europaea, I–V. Cambridge University Press, London.

  • Villéger, S., J. R. Miranda, D. F. Hernandez & D. Mouillot, 2012. Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine fish communities. PLoS ONE 7: e40679. https://doi.org/10.1371/journal.pone.0040679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, P. D., S. Wijnhoven & G. van der Velde, 2013. Macrophyte presence and growth form influence macroinvertebrate community structure. Aquatic Botany 104: 80–87. https://doi.org/10.1016/j.aquabot.2012.09.003.

    Article  Google Scholar 

  • Wang, L., Y. Gao, B.-P. Han, H. Fan & H. Yang, 2019. The impacts of agriculture on macroinvertebrate communities: from structural changes to functional changes in Asia’s cold region streams. Science of the Total Environment 676: 155–164. https://doi.org/10.1016/j.scitotenv.2019.04.272.

    Article  CAS  PubMed  Google Scholar 

  • Waringer, J. & W. Graf, 1997. Atlas der ӦsterreichischenKöcherfliegenlarven: unter Einschluss der angrenzenden Gebiete, Facultas Universitätsverlag, Wien.

    Google Scholar 

  • Worischka, S., S. I. Schmidt, C. Hellmann & C. Winkelmann, 2015. Selective predation by omnivorous fish on stream macroinvertebrates—the role of prey traits and prey abundance. Limnologica 52: 41–50. https://doi.org/10.1016/j.limno.2015.03.004.

    Article  Google Scholar 

  • Zacharias, I. & M. Zamparas, 2010. Mediterranean temporary ponds. A disappearing ecosystem. Biodiversity and Conservation 19: 3827–3834. https://doi.org/10.1007/s10531-010-9933-7.

    Article  Google Scholar 

  • Zehetner, F., U. Rosenfellner, A. Mentler & M. H. Gerzabek, 2009. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water, Air and Soil Pollution 198: 125–132. https://doi.org/10.1007/s11270-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Serbian Ministry of Science, Technological Development and Innovation (Agreement number 451-03-47/2023-01/200124) and a bilateral cooperation scientific project between Serbia and Croatia “Trophic connections of freshwater ichthyofauna: fish diet in sustainable aquaculture” funded by the Serbian Ministry of Education, Science and Technological Development and Croatian Ministry of Science and Education. We thank the students that helped in the field and laboratory work. We are especially grateful to Britta Tietjen and the Theoretical Ecology Group (Freie Universität Berlin) for discussions which improved this work, and to Dr. Dragana Jenačković Gocić from the Department of Biology and Ecology, University of Niš for helping in the identification of macrophyte species. We thank Sonja Dix (UK) for the final English corrections.

Funding

Funding was provided by Ministarstvo znanosti i obrazovanja and Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja.

Author information

Authors and Affiliations

Authors

Contributions

OS, MSP, DM, DČ, and OYB designed the study and developed the analytical procedure. All authors contributed the data. DC provided the map of the study areas. OYB performed the statistical analyses. OS wrote the original draft. All authors contributed to the reviewing and editing of the manuscript and approved the final version.

Corresponding author

Correspondence to Olivera Stamenković.

Ethics declarations

Competing interests

The authors have no conflict of interests to declare.

Additional information

Handling editor: Dani Boix

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamenković, O., Stojković Piperac, M., Milošević, D. et al. Multiple anthropogenic pressures and local environmental gradients in ponds governing the taxonomic and functional diversity of epiphytic macroinvertebrates. Hydrobiologia 851, 45–65 (2024). https://doi.org/10.1007/s10750-023-05311-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05311-6

Keywords

Navigation