Skip to main content

Human Impact Induces Shifts in Trophic Composition and Diversity of Consumer Communities in Small Freshwater Ecosystems

  • Chapter
  • First Online:
Small Water Bodies of the Western Balkans

Abstract

The current global rates of human impact intensification in freshwater ecosystems and their surroundings have caused an alarming loss of freshwater biodiversity and functioning across multiple trophic levels. Particularly vulnerable to anthropogenic pressures are small water bodies (SWB). However, the majority of the evidence is limited to a single community, especially macroinvertebrates, thus leaving us uncertain about cross-community multitrophic responses of freshwater consumers to anthropogenic pressure. Furthermore, the effects of human impact on trophic composition and diversity of consumers may depend on the nature of human activities. We therefore tested the effects of different co-occurring human activities (agricultural land use, gravel exploitation, road proximity, and waste input) and of the overall human-impact intensification on trophic trait diversity and composition of different animal communities in SWB. For this, four types of consumer communities (i.e., zooplankton, benthic macroinvertebrates, epiphytic macroinvertebrates, and fish community) were sampled in a total of 58 study sites in two geographic areas in Serbia and Croatia for two years. In addition to human impact, we also tested the effects of altered water properties, macrophyte biomass, and predation. Our results clearly show that human impact induced changes in the trophic diversity and the trophic composition of different consumer communities. The direction and strength of such functional shifts depended on the nature of human impact and on the type of consumer community. Furthermore, we found that the effects of human impacts on the distribution of trophic traits across all consumer communities significantly differed between trophic groups (i.e., herbivores, decomposers, and carnivores) and trophic levels (i.e., trophic position in the food web). Our findings point toward the urgent need to consider multiple stressors and a range of animal community types in future research and management of freshwater ecosystems. These results highlight the importance of a multitrophic perspective when predicting the consequences of human impact for ecosystem biodiversity and functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028

    Article  Google Scholar 

  2. Heino J, Alahuhta J, Bini LM et al (2020) Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol Rev 92:89–106. https://doi.org/10.1111/brv.12647

    Article  Google Scholar 

  3. Céréghino R, Biggs J, Oertli B, Declerck S (2008) The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597:1–6. https://doi.org/10.1007/s10750-007-9225-8

    Article  Google Scholar 

  4. van Klink R, Bowler DE, Gongalsky KB et al (2020) Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368:417–420. https://doi.org/10.1126/science.aax9931

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Birk S, Chapman D, Carvalho L et al (2020) Synthesizing the impacts of multiple stressors on freshwater biota across scales and ecosystems. Nat Ecol Evol 4:1060–1068. https://doi.org/10.1038/s41559-020-1216-4

    Article  PubMed  Google Scholar 

  6. Mondy CP, Muñoz I, Dolédec S (2016) Life-history strategies constrain invertebrate community tolerance to multiple stressors: A case study in the Ebro basin. Sci Total Environ 572:196–206. https://doi.org/10.1016/j.scitotenv.2016.07.227

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122

    Article  Google Scholar 

  8. Vasconcelos FR, Diehl S, Rodríguez P et al (2019) Bottom-up and top-down effects of browning and warming on shallow lake food webs. Glob Change Biol 25:504–521. https://doi.org/10.1111/gcb.14521

    Article  ADS  Google Scholar 

  9. Price EL, Sertić Perić M, Romero GQ, Kratina P (2019) Land use alters trophic redundancy and resource flow through stream food webs. J Anim Ecol 88:677–689. https://doi.org/10.1111/1365-2656.12955

    Article  PubMed  Google Scholar 

  10. Riley WD, Potter ECE, Biggs J et al (2018) Small water bodies in great Britain and Ireland: ecosystem function, human-generated degradation, and options for restorative action. Sci Total Environ 645:1598–1616. https://doi.org/10.1016/j.scitotenv.2018.07.243

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kristensen P, Globevnik L (2014) European small water bodies. Biol Environ 114B:281–287. https://doi.org/10.3318/BIOE.2014.13

    Article  Google Scholar 

  12. Lorenz S, Rasmussen JJ, Süß A et al (2017) Specifics and challenges of assessing exposure and effects of pesticides in small water bodies. Hydrobiologia 793:213–224. https://doi.org/10.1007/s10750-016-2973-6

    Article  CAS  Google Scholar 

  13. Burdon FJ, Bai Y, Reyes M et al (2020) Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater. Glob Change Biol 26:6363–6382. https://doi.org/10.1111/gcb.15302

    Article  ADS  Google Scholar 

  14. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365

    Article  Google Scholar 

  15. Statzner B, Bêche LA (2010) Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshw Biol 55:80–119. https://doi.org/10.1111/j.1365-2427.2009.02369.x

    Article  Google Scholar 

  16. Dolédec S, Phillips N, Scarsbrook M et al (2006) Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. J N Am Benthol Soc 25:44–60. https://doi.org/10.1899/0887-3593(2006)25[44:COSAFA]2.0.CO;2

    Article  Google Scholar 

  17. Statzner B, Bis B, Dolédec S, Usseglio-Polatera P (2001) Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic Appl Ecol 2:73–85. https://doi.org/10.1078/1439-1791-00039

    Article  Google Scholar 

  18. Yadamsuren O, Morse JC, Hayford B et al (2020) Macroinvertebrate community responses to land use: a trait-based approach for freshwater biomonitoring in Mongolia. Hydrobiologia 847:1887–1902. https://doi.org/10.1007/s10750-020-04220-2

    Article  Google Scholar 

  19. Statzner B, Bady P, Dolédec S, Schöll F (2005) Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of trait patterns in least impacted river reaches. Freshw Biol 50:2136–2161. https://doi.org/10.1111/j.1365-2427.2005.01447.x

    Article  Google Scholar 

  20. Rawer-Jost C, Böhmer J, Blank J, Rahmann H (2000) Macroinvertebrate functional feeding group methods in ecological assessment. Hydrobiologia 422–423:225–232. https://doi.org/10.1007/978-94-011-4164-2_18

    Article  Google Scholar 

  21. Kritzberg ES, Hasselquist EM, Škerlep M et al (2020) Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49:375–390. https://doi.org/10.1007/s13280-019-01227-5

    Article  PubMed  Google Scholar 

  22. Barbour MT, Gerritsen J, Griffith GE, et al. (1996) A framework for biological criteria for florida streams using benthic macroinvertebrates published by : The University of Chicago Press on behalf of the Society for Freshwater Science Stable URL . http://www.jstor.org/stable/1467948. REFERENCES Linked refe. J N Am Benthol Soc 15

  23. Schramski JR, Dell AI, Grady JM et al (2015) Metabolic theory predicts whole-ecosystem properties. Proc Natl Acad Sci USA 112:2617–2622. https://doi.org/10.1073/pnas.1423502112

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buzhdygan OY, Meyer ST, Weisser WW et al (2020) Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat Ecol Evolut 4:393–405. https://doi.org/10.1038/s41559-020-1123-8

    Article  Google Scholar 

  25. Eisenhauer N, Schielzeth H, Barnes AD et al (2019) A multitrophic perspective on biodiversity–ecosystem functioning research. Adv Ecol Res 61:1–54. https://doi.org/10.1016/bs.aecr.2019.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li Z, Liu Z, Heino J, et al. (2020) Discriminating the effects of local stressors from climatic factors and dispersal processes on multiple biodiversity dimensions of macroinvertebrate communities across subtropical drainage basins. Sci Total Environ 711:134750. https://doi.org/10.1016/j.scitotenv.2019.134750

  27. Cordero PU, Langenheder S, Striebel M, et al (2021) Functionally reversible impacts of disturbances on lake food webs linked to spatial and seasonal dependencies. Ecology 0–3. https://doi.org/10.1002/ecy.3283

  28. de Castro DMP, Dolédec S, Callisto M (2017) Landscape variables influence taxonomic and trait composition of insect assemblages in Neotropical savanna streams. Freshw Biol 62:1472–1486. https://doi.org/10.1111/fwb.12961

    Article  CAS  Google Scholar 

  29. Barnes AD, Allen K, Kreft H et al (2017) Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat Ecol Evolut 1:1511–1519. https://doi.org/10.1038/s41559-017-0275-7

    Article  Google Scholar 

  30. Filazzola A, Brown C, Dettlaff MA et al (2020) The effects of livestock grazing on biodiversity are multi-trophic: a meta-analysis. Ecol Lett 23:1298–1309. https://doi.org/10.1111/ele.13527

    Article  PubMed  Google Scholar 

  31. Petchey OL, Downing AL, Mittelbach GG, et al. (2004) Species loss and the structure and functioning of multitrophic aquatic systems. In: Oikos. Munksgaard, pp 467–478

    Google Scholar 

  32. Li Z, Heino J, Liu Z et al (2021) The drivers of multiple dimensions of stream macroinvertebrate beta diversity across a large montane landscape. Limnol Oceanogr 66:226–236. https://doi.org/10.1002/lno.11599

    Article  ADS  Google Scholar 

  33. Gayraud S, Statzner B, Bady P, et al. (2003) Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshwater Biol 48:2045–2064. APPLIED. https://doi.org/10.1111/j.1365-2427.2007.01924.x

  34. van der Plas F (2019) Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev 94:1220–1245. https://doi.org/10.1111/brv.12499

    Article  PubMed  Google Scholar 

  35. Gagic V, Bartomeus I, Jonsson T, et al. (2015) Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc Royal Soc B: Biol Sci 282. https://doi.org/10.1098/rspb.2014.2620

  36. Davies B, Biggs J, Williams P et al (2008) Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agr Ecosyst Environ 125:1–8. https://doi.org/10.1016/j.agee.2007.10.006

    Article  Google Scholar 

  37. Williams P, Whitfield M, Biggs J et al (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Cons 115:329–341. https://doi.org/10.1016/S0006-3207(03)00153-8

    Article  Google Scholar 

  38. Stamenković O, Stojković Piperac M, Milošević D et al (2019) Anthropogenic pressure explains variations in the biodiversity of pond communities along environmental gradients: a case study in south-eastern Serbia. Hydrobiologia 4:65–83. https://doi.org/10.1007/s10750-019-03978-4

    Article  CAS  Google Scholar 

  39. Petermann JS, Roberts AL, Hemmerling C, et al. (2020) Direct and indirect effects of forest management on tree-hole inhabiting aquatic organisms and their functional traits. Sci Total Environ 704:135418. https://doi.org/10.1016/j.scitotenv.2019.135418

  40. Attwood SJ, Maron M, House APN, Zammit C (2008) Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob Ecol Biogeogr 17:585–599. https://doi.org/10.1111/j.1466-8238.2008.00399.x

    Article  Google Scholar 

  41. Tuck SL, Winqvist C, Mota F et al (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol 51:746–755. https://doi.org/10.1111/1365-2664.12219

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lang B, Ehnes RB, Brose U, Rall BC (2017) Temperature and consumer type dependencies of energy flows in natural communities. Oikos 126:1717–1725. https://doi.org/10.1111/oik.04419

    Article  Google Scholar 

  43. Pavluk TI, Bij De Vaate A, Leslie HA (2000) Development of an Index of trophic completeness for benthic macroinvertebrate communities in flowing waters. Hydrobiologia 427:135–141. https://doi.org/10.1023/A:1003911109416

    Article  Google Scholar 

  44. Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. https://doi.org/10.1038/nature11118

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Raffaelli D (2004) How extinction patterns affect ecosystems. Science 306:1141–1142

    Article  Google Scholar 

  46. Voigt W, Perner J, Davis AJ et al (2003) Trophic levels are differentially sensitive to climate. Ecology 84:2444–2453

    Article  Google Scholar 

  47. Hines J, Eisenhauer N, Drake BG (2015) Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2. Glob Change Biol 21:4642–4650. https://doi.org/10.1111/gcb.12965

    Article  ADS  Google Scholar 

  48. Rylov VM (1948) Crustaceans, Freshwater Cyclopoida, Fauna of the USSR. Nauka, Moscow-Leningrad

    Google Scholar 

  49. Bartoš E (1959) Fauna ČSSR 15: Virnici-Rotatoria. Nakladatelství Československé Akademie věd, Praha

    Google Scholar 

  50. Šramek-Husek R, Straškraba M, Brtek J (1962) Fauna ČSSR 16: Lupenonožci - Branchiopoda. Praha

    Google Scholar 

  51. Dussart B (1969) Les Copépodes des eaux continentales d’Europe occidentale. Tome II: Cyclopoides et Biologie. Boubée et Cie, Paris

    Google Scholar 

  52. Flössner D (1972) Krebstiere, Crustacea: Kiemen- und Blattfüßer, Branchiopoda/Fischläuse. VEB Gustav Fischer Verlag, Jena, Branchiura

    Google Scholar 

  53. Koste W (1978) Rotatoria, die Rädertiere Mitteleuropas: Überordnung Monogononta. Gebrüder Borntraeger, Berlin—Stutgart

    Google Scholar 

  54. Petkovski S (1983) Fauna of Macedonia. Part 5: Calanoids—Calanoida (Crustacea Copepoda). Nat. Sci. Museum of Macedonia, Skopje

    Google Scholar 

  55. Turner JT (1984) The feeding ecology of some zooplankters that are important prey items of larval fish. NOAA Technical Report NMFS, 7.

    Google Scholar 

  56. Rautio M, Vincent WF (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw Biol 51:1038–1052. https://doi.org/10.1111/j.1365-2427.2006.01550.x

    Article  CAS  Google Scholar 

  57. Chang KH, Doi H, Nishibe Y, Nakano SI (2010) Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. priodonta and A. girodi in pond ecosystems. J Limnol 69:209–216. https://doi.org/10.3274/JL10-69-2-03

    Article  Google Scholar 

  58. Benedetti F, Gasparini S, Ayata SD (2015) Identifying copepod functional groups from species functional traits. J Plankton Res 38:159–166. https://doi.org/10.1093/plankt/fbv096

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tõnno I, Agasild H, Kõiv T et al (2016) Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS ONE 11:1–17. https://doi.org/10.1371/journal.pone.0154526

    Article  CAS  Google Scholar 

  60. Stamenković O, Simić V, Stojković Piperac M et al (2021) Direct, water-chemistry mediated, and cascading effects of human-impact intensification on multitrophic biodiversity in ponds. Aquat Ecol 55:187–214. https://doi.org/10.1007/s10452-020-09822-5

    Article  CAS  Google Scholar 

  61. Moller Pillot HKM (2009) Chironomidae Larvae. Biology and Ecology of the Chironomini. KNNV, Zeist, The Netherlands

    Google Scholar 

  62. Moller Pillot HKM (1984) De larven der Nederlandse Chironomidae (Diptera). (Orthocladiinae sensu latu)./The larvae of the Dutch Chironomidae (Diptera). (Orthocladiinae sensu latu). Nederlandse Faunistische Mededelin 1B. Stichting European Invertebrate Survey, Leiden, Nederland

    Google Scholar 

  63. Glöer P (2002) Die Süßwassergastropoden Nord und Mitteleuropas: Bestimmungsschlüssel, Lebensweise. Conchbooks, Bonn, Verbreitung

    Google Scholar 

  64. Eiseler B (2005) Bildbestimmungsschlüssel für die Eintagsfliegenlarven der deutschen Mittelgebirge und des Tieflandes. Lauterbornia 53:1–112

    Google Scholar 

  65. Elliot J, Humpesch U (2010) Mayfly larvae (Ephemeroptera) of Britain and Ireland: Keys and Review of their Ecology. Freshwater Biological Association, Ambleside

    Google Scholar 

  66. Andersen T, Cranston PS, Epler JH (2013) The larvae of Chironomidae (Diptera) of the Holarctic region—Keys and diagnoses. Insect Systematics and Evolution, Lund, Sweden

    Google Scholar 

  67. Rossaro B, Lencioni V (2015) A key to larvae of Diamesa Meigen, 1835 (Diptera, Chironomidae), well known as adult males and pupae from Alps (Europe). J Entomol Acarol Res 47:123–138. https://doi.org/10.4081/jear.2015.5516

    Article  Google Scholar 

  68. Moller Pillot HKM (1984) De larven der Nederlandse Chironomidae (Diptera). (Inleiding, Tanypodinae & Chironomini)/The larvae of the Dutch Chironomidae (Diptera). (Introduction, Tanypodinae & Chironomini).Nederlandse Faunistische Mededelin 1A. Stichting European Invertebrate Survey, Leiden, Nederland

    Google Scholar 

  69. Elliott JM, Humpesch UH, Macan TT (1988) Larvae of the British Ephemeroptera: a key with ecological notes. Freshwater Biological Association

    Google Scholar 

  70. Schmid PE (1993) A key to the larval Chironomidae and their instars from Austrian Danube region streams and rivers with particular reference to a numerical taxonomic approach. 1 Diamesinae, Prodiamesinae, and Orthocladiinae. Federal Institute for Water Quality, Wien-Kaisermühlen

    Google Scholar 

  71. Waringer J, Graf W (1997) Atlas der österreichischen Köcherfliegenlarven: Unter Einschluss der angrenzenden Gebiete. Facultas Universitätsverlag, Wien

    Google Scholar 

  72. Gerken B, Sternberg K (1999) Die Exuvien Europäischer Libellen (Insecta, Odonata). The exuviae of European dragonflies. Arnika & Eisvogel, Höxter, Jena

    Google Scholar 

  73. Timm T (1999) Eestirõngusside (Annelida) määraja. Estonian Academy Publishers, Tartu-Tallinn, A Guide to the Estonian Annelidae

    Google Scholar 

  74. Pfleger V (2000) A field guide in colour to Molluscs. Silverdale Books, Prague

    Google Scholar 

  75. Bauernfeind E, Humpesch U (2001) Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ӧkologie. Verlag des Naturhistorischen Museums, Wien

    Google Scholar 

  76. Moog O, Hartmann A (2017) Fauna Aquatica Austriaca, 3rd edn. BMLFUW, Vienna

    Google Scholar 

  77. Simonović P (2001) Fishes of Serbia, In Serbian. NNK International, Belgrade

    Google Scholar 

  78. Grenouillet G, Schmidt-Kloiber A (2006) Fish Indicator Database. EURO-LIMPACS project, Work package 7—Indicators of ecosystem health, Task 4, accessed via www.freshwaterecology.info, version 7.0 (accessed on 08.02.2021)

  79. Vejřík L, Vejříková I, Blabolil P et al (2017) European catfish (Silurus glanis) as a freshwater apex predator drives ecosystem via its diet adaptability. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-16169-9

    Article  CAS  Google Scholar 

  80. Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411. https://doi.org/10.1046/j.1461-0248.2002.00339.x

    Article  Google Scholar 

  81. Díaz S, Cabido M (2001) Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. https://doi.org/10.1016/S0169-5347(01)02283-2

    Article  Google Scholar 

  82. Trommer G, Poxleitner M, Lorenz P et al (2017) Altered food-web dynamics under increased nitrogen load in phosphorus deficient lakes. Aquat Sci 79:1009–1021. https://doi.org/10.1007/s00027-017-0551-2

    Article  CAS  Google Scholar 

  83. Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Syst 25:1–29. https://doi.org/10.1146/annurev.es.25.110194.000245

    Article  ADS  Google Scholar 

  84. Deosti S, de Fátima BF, Lansac-Tôha FM et al (2021) Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia 848:1475–1490. https://doi.org/10.1007/s10750-021-04527-8

    Article  Google Scholar 

  85. Jeppesen E, Jensen JP, Søndergaard M et al (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343):151–164. https://doi.org/10.1007/978-94-011-5648-6_17

    Article  Google Scholar 

  86. Li Z, Wang J, Liu Z et al (2019) Different responses of taxonomic and functional structures of stream macroinvertebrate communities to local stressors and regional factors in a subtropical biodiversity hotspot. Sci Total Environ 655:1288–1300. https://doi.org/10.1016/j.scitotenv.2018.11.222

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Ebeling A, Rzanny M, Lange M et al (2018) Plant diversity induces shifts in the functional structure and diversity across trophic levels. Oikos 127:208–219. https://doi.org/10.1111/oik.04210

    Article  Google Scholar 

  88. O’Gorman EJ (2021) Multitrophic diversity sustains ecological complexity by dampening top-down control of a shallow marine benthic food web. Ecology 102:1–13. https://doi.org/10.1002/ecy.3274

    Article  Google Scholar 

  89. Kerans BL, Karr JR (1994) A Benthic Index of Biotic Integrity ( B-IBI ) for Rivers of the Tennessee Valley. Ecol Appl 4:768–785

    Article  Google Scholar 

  90. Hansen JP, Wikström SA, Axemar H, Kautsky L (2011) Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquat Ecol 45:11–22. https://doi.org/10.1007/s10452-010-9319-7

    Article  CAS  Google Scholar 

  91. Reyne M, Nolan M, McGuiggan H, et al (2020) Artificial agri-environment scheme ponds do not replicate natural environments despite higher aquatic and terrestrial invertebrate richness and abundance. Journal of Applied Ecology 1–12. https://doi.org/10.1111/1365-2664.13738

  92. Linehan JE, Gregory RS, Schneider DC (2001) Predation risk of age-0 cod (Gadus) relative to depth and substrate in coastal waters. J Exp Mar Biol Ecol 263:25–44. https://doi.org/10.1016/S0022-0981(01)00287-8

    Article  Google Scholar 

  93. Grimm MP, Backx JJGM (1990) The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200(201):557–566

    Article  Google Scholar 

  94. Mehner T, Holmgren K, Lauridsen TL et al (2007) Lake depth and geographical position modify lake fish assemblages of the European “Central Plains” ecoregion. Freshw Biol 52:2285–2297. https://doi.org/10.1111/j.1365-2427.2007.01836.x

    Article  CAS  Google Scholar 

  95. Mehner T, Diekmann M, Brämick U, Lemcke R (2005) Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshw Biol 50:70–85. https://doi.org/10.1111/j.1365-2427.2004.01294.x

    Article  CAS  Google Scholar 

  96. Holmgren K, Appelberg M (2000) Size structure of benthic freshwater fish communities in relation to environmental gradients. J Fish Biol 57:1312–1330. https://doi.org/10.1006/jfbi.2000.1395

    Article  Google Scholar 

  97. Hilge V (1985) The influence of temperature on the growth of the European catfish (Silurus glanis L.). J Appl Ichthyol 1:27–31. https://doi.org/10.1111/j.1439-0426.1985.tb00407.x

    Article  Google Scholar 

  98. Copp GH, Robert Britton J, Cucherousset J et al (2009) Voracious invader or benign feline? A review of the environmental biology of European catfish silurus glanis in its native and introduced ranges. Fish Fish 10:252–282. https://doi.org/10.1111/j.1467-2979.2008.00321.x

    Article  Google Scholar 

  99. Oertli B, Parris KM (2019) Review: toward management of urban ponds for freshwater biodiversity. Ecosphere 10. https://doi.org/10.1002/ecs2.2810

  100. Syväranta J, Cucherousset J, Kopp D et al (2009) Dietary breadth and trophic position of introduced European catfish Silurus glanis in the River Tarn (Garonne River basin), Southwest France. Aquat Biol 8:137–144. https://doi.org/10.3354/ab00220

    Article  Google Scholar 

  101. Castaldelli G, Pluchinotta A, Milardi M et al (2013) Introduction of exotic fish species and decline of native species in the lower Po basin, north-eastern Italy. Aquat Conserv Mar Freshwat Ecosyst 23:405–417. https://doi.org/10.1002/aqc.2345

    Article  Google Scholar 

  102. Yen TP, H R, (2013) Status of water quality subject to sand mining in the Kelantan River, Kelantan. Trop Life Sci Res 24:19–34

    Google Scholar 

  103. Leitão RP, Zuanon J, Mouillot D et al (2018) Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41:219–232. https://doi.org/10.1111/ecog.02845

    Article  PubMed  PubMed Central  Google Scholar 

  104. Penone C, Allan E, Soliveres S et al (2019) Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol Lett 22:170–180. https://doi.org/10.1111/ele.13182

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Data collected for this study were funded by the Serbian Ministry of Education, Science and Technological Development (contract number 451-03-9/2021-14/200124) and by a bilateral cooperation project between Serbia and Croatia funded by the Serbian Ministry of Education, Science and Technological Development and Croatian Ministry of Science and Education. We thank the student helpers for their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Y. Buzhdygan .

Editor information

Editors and Affiliations

18.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 364 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buzhdygan, O.Y. et al. (2022). Human Impact Induces Shifts in Trophic Composition and Diversity of Consumer Communities in Small Freshwater Ecosystems. In: Pešić, V., Milošević, D., Miliša, M. (eds) Small Water Bodies of the Western Balkans. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-86478-1_18

Download citation

Publish with us

Policies and ethics