Skip to main content

Advertisement

Log in

A prolonged drought period reduced temporal β diversity of zooplankton, phytoplankton, and fish metacommunities in a Neotropical floodplain

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Extreme climate events and the damming of natural rivers can intensify the effects of droughts and floods, which can consequently affect aquatic biota. We investigated whether a prolonged drought increased the similarity of aquatic metacommunities over time when compared to a period with extreme flood events in 10 floodplain lakes. We expected to find (i) lower temporal environmental variability and lower β diversity among months during the prolonged drought period, and (ii) a more pronounced decrease in β diversity for aquatic organisms with active dispersal (fish) than for small organisms with passive dispersal (phytoplankton and zooplankton) during the prolonged drought period. We estimated the β diversity among months using the Sørensen and Bray–Curtis dissimilarities and their components separately for each lake and each period. We used paired t tests to compare the periods. Although the prolonged drought reduced environmental variability, the homogenization of biota was dependent on the considered β diversity component. In the face of climate change and a higher frequency of severe droughts, biotic variability can decrease over time, thereby changing the dynamics of floodplain ecosystems. We emphasize the importance of natural flood events for maintaining environmental variability and ecosystem functioning in floodplains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Our paper contains supplementary information with data from the available species list.

Code availability

Not applicable.

References

  • Abrial, E., L. A. Espínola, A. P. Rabuffetti, M. F. Eurich, A. R. Paira, M. C. M. Blettler & M. L. Amsler, 2019. Variability of hydrological connectivity and fish dynamics in a wide subtropical–temperate floodplain. River Research and Applications 35: 1520–1529.

    Article  Google Scholar 

  • Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004a. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.

    Article  Google Scholar 

  • Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004b. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology & Hydrobiology 4: 255–268.

    Google Scholar 

  • Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.

    Article  CAS  Google Scholar 

  • Agostinho, A., C. Bonecker & L. Gomes, 2009. Effects of water quantity on connectivity: the case of the upper Paraná River floodplain. Ecohydrology and Hydrobiology 9: 99–113.

    Article  Google Scholar 

  • Alves, J. C., G. F. Andreotti, A. A. Agostinho & L. C. Gomes, 2021. Effects of the El Niño Southern Oscillation (ENSO) on the fish assemblages of a Neotropical floodplain. Hydrobiologia 848: 1811–1823.

    Article  Google Scholar 

  • Anagnostidis, K., & J. Komárek, 1988. Modern approach to the classification of cyanophytes. 3. Oscillatoriales. Algological Studies. 50/53.

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    Article  PubMed  Google Scholar 

  • Anderson, M. J., T. O. Crist, J. M. Chase, M. Vellend, B. D. Inouye, A. L. Freestone, N. J. Sanders, H. V. Cornell, L. S. Comita, K. F. Davies, S. P. Harrison, N. J. B. Kraft, J. C. Stegen & N. G. Swenson, 2011. Navigating the multiple meanings of b diversity: a roadmap for the practising ecologist. Ecology Letters 14: 19–28.

    Article  PubMed  Google Scholar 

  • Andreotti, G. F., J. C. Alves, D. C. Alves, A. A. Agostinho & L. C. Gomes, 2021. The response of fish functional diversity to the El Niño Southern Oscillation (ENSO) in a Neotropical floodplain. Hydrobiologia 848: 1207–1218.

    Article  Google Scholar 

  • Aspin, T. W. H., T. J. Matthews, K. Khamis, A. M. Milner, Z. Wang, M. J. O’Callaghan & M. E. Ledger, 2018. Drought intensification drives turnover of structure and function in stream invertebrate communities. Ecography 41: 1992–2004.

    Article  Google Scholar 

  • Bertoncin, A. P. S., G. D. Pinha, M. T. Baumgartner & R. P. Mormul, 2019. Extreme drought events can promote homogenization of benthic macroinvertebrate assemblages in a floodplain pond in Brazil. Hydrobiologia 826: 379–393.

    Article  Google Scholar 

  • Bicudo, C. E. M., & M. Meneze, 2006. Gêneros de algas de águas continentais do Brasil (chave para identificação e descrições). São Carlos.

  • Bomfim, F. F., F. M. Lansac-Tôha, C. C. Bonecker & F. A. Lansac-Tôha, 2021. Determinants of zooplankton functional dissimilarity during years of El Niño and La Niña in floodplain shallow lakes. Aquatic Sciences 83: 41.

    Article  CAS  Google Scholar 

  • Bonecker, C. C., A. S. M. Aoyagui & R. M. Santos, 2009. The impact of impoundment on the rotifer communities in two tropical floodplain environments: interannual pulse variations. Brazilian Journal of Biology 69: 529–537.

    Article  CAS  Google Scholar 

  • Bonecker, C. C., L. P. Diniz, L. S. M. Braghin, T. Mantovano, J. V. F. Silva, F. F. Bomfim, D. A. Moi, S. Deosti, G. N. T. dos Santos, D. A. Candeias, A. J. M. M. Mota, L. F. Machado Velho & F. A. Lansac-Tôha, 2020. Synergistic effects of natural and anthropogenic impacts on zooplankton diversity in a subtropical floodplain: a long-term study. Oecologia Australis 24: 524–537.

    Article  Google Scholar 

  • Borges, P. & S. Train, 2009. Phytoplankton diversity in the Upper Paraná River floodplain during two years of drought (2000 and 2001). Brazilian Journal of Biology 69: 637–647.

    Article  CAS  Google Scholar 

  • Bortolini, J. C., V. M. Bovo-Scomparin, A. C. M. D. Paula, G. A. Moresco, L. M. Reis, S. Jati & L. C. Rodrigues, 2014. Composition and species richness phytoplankton in a subtropical floodplain lake: a long-term study. Acta Limnologica Brasiliensia 26: 296–305.

    Article  Google Scholar 

  • Bortolini, J. C., S. Train & L. C. Rodrigues, 2016. Extreme hydrological periods: effects on phytoplankton variability and persistence in a subtropical floodplain. Hydrobiologia 763: 223–236.

    Article  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. Gliwicz, E. Grygierek, A. Herzzig, A. Hillbricht-Illkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Bouvy, M., M. Pagano & M. Troussellier, 2001. Effects of a cyanobacterial bloom (Cylindrospermopsis raciborskii) on bacteria and zooplankton communities in Ingazeira reservoir (northeast Brazil). Aquatic Microbial Ecology 25: 215–227.

    Article  Google Scholar 

  • Bozelli, R. L., S. M. Thomaz, A. A. Padial, P. M. Lopes & L. M. Bini, 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753: 233–241.

    Article  CAS  Google Scholar 

  • Braghin, L. S. M., N. R. Simões & C. C. Bonecker, 2016. Hierarchical effects of local factors on zooplankton species diversity. Inland Waters 6: 645–654.

    Article  CAS  Google Scholar 

  • Braghin, L. S. M., B. A. Almeida, D. C. Amaral, T. F. Canella, B. C. G. Gimenez & C. C. Bonecker, 2018. Effects of dams decrease zooplankton functional β-diversity in river-associated lakes. Freshwater Biology 63: 721–730.

    Article  Google Scholar 

  • Braz, J. E. M., J. D. Dias, C. C. Bonecker & N. R. Simões, 2020. Oligotrophication affects the size structure and potential ecological interactions of planktonic microcrustaceans. Aquatic Sciences 82: 1–10.

    Article  Google Scholar 

  • Cabral, C. R., L. P. Diniz, A. J. Silva, G. Fonseca, L. S. Carneiro, M. Melo Júnior & A. Caliman, 2020. Zooplankton species distribution, richness and composition across tropical shallow lakes: a large scale assessment by biome, lake origin, and lake habitat. Annales De Limnologie 56: 1–22.

    Article  Google Scholar 

  • Cadotte, M. W. & C. M. Tucker, 2017. Should environmental filtering be abandoned? Trends in Ecology and Evolution 32: 429–437.

    Article  PubMed  Google Scholar 

  • Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. MacE, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava & S. Naeem, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Cardoso, P., F. Rigal & J. C. Carvalho, 2018. BAT: Biodiversity Assessment Tools. R package version 1.6.0. https://cran.r-project.org/package=BAT.

  • Carvalho, J. C., P. Cardoso & P. Gomes, 2012. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography 21: 760–771.

    Article  Google Scholar 

  • Chaparro, G., M. C. Marinone, R. J. Lombardo, M. R. Schiaffino, A. de Souza Guimarães & I. O’Farrell, 2011. Zooplankton succession during extraordinary drought-flood cycles: a case study in a South American floodplain lake. Limnologica 41: 371–381.

    Article  Google Scholar 

  • Chaparro, G., Z. Horváth, I. O’farrell, R. Ptacnik & T. Hein, 2018. Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biology 63: 380–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro, G., I. O’Farrell & T. Hein, 2019. Multi-scale analysis of functional plankton diversity in floodplain wetlands: effects of river regulation. Science of the Total Environment 667: 338–347.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J. Y., K. S. Jeong, S. K. Kim, G. H. La, K. H. Chang & G. J. Joo, 2014. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecological Informatics 24: 177–185.

    Article  Google Scholar 

  • Chrisostomou, A., M. Moustaka-Gouni, S. Sgardelis & T. Lanaras, 2009. Air-dispersed phytoplankton in a mediterranean river-reservoir system (aliakmon-polyphytos, Greece). Journal of Plankton Research 31: 877–884.

    Article  CAS  Google Scholar 

  • Conceição, E. O., J. Higuti, R. de Campos & K. Martens, 2017. Effects of flood pulses on persistence and variability of pleuston communities in a tropical floodplain lake. Hydrobiologia 807: 175–188.

    Article  Google Scholar 

  • Deosti, S., F. de Fátima Bomfim, F. M. Lansac-Tôha, B. A. Quirino, C. C. Bonecker & F. A. Lansac-Tôha, 2021. Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia 848: 1475–1490.

    Article  Google Scholar 

  • Dias, J. D., N. R. Simões, M. Meerhoff, F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2016. Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain. Hydrobiologia 781: 109–125.

    Article  CAS  Google Scholar 

  • Diniz, L. P., L. M. A. Elmoor-Loureiro, V. L. S. Almeida & M. de Melo Júnior, 2013. Cladocera (Crustacea, Branchiopoda) of a temporary shallow pond in the Caatinga of Pernambuco, Brazil. Nauplius 21: 65–78.

    Article  Google Scholar 

  • Diniz, L. P., D. K. Petsch & C. C. Bonecker, 2021. Zooplankton β diversity dynamics and metacommunity structure depend on spatial and temporal scales in a Neotropical floodplain. Freshwater Biology 66: 1328–1342.

    Article  Google Scholar 

  • Douglas, M. R., P. C. Brunner & M. E. Douglas, 2003. Drought in an evolutionary context: molecular variability in flannelmouth sucker (Catostomus latipinnis) from the Colorado River Basin of western North America. Freshwater Biology 48: 1254–1273.

    Article  CAS  Google Scholar 

  • Elmoor-Loureiro, L. M. A., 1997. Manual de identificação de cladóceros límnicos do Brasil. Brasília.

  • Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.

    Article  Google Scholar 

  • Giné, M. F., H. Bergamin F, E. A. G. Zagatto & B. F. Reis, 1980. Simultaneous determination of nitrate and nitrite by flow injection analysis. Analytica Chimica Acta 114: 191–197.

    Article  Google Scholar 

  • Golec-Fialek, C., F. M. Lansac-Tôha & C. C. Bonecker, 2021. Response of the zooplankton community to extreme hydrological variations in a temporary lake in a neotropical floodplain system. Limnologica 86: 125834.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters, Blackwell, Oxford:

    Google Scholar 

  • Graça, W. J. & C. S. Pavanelli, 2007. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. Maringá.

  • Granzotti, R. V., L. E. Miranda, A. A. Agostinho & L. C. Gomes, 2018. Downstream impacts of dams: shifts in benthic invertivorous fish assemblages. Aquatic Sciences 80: 1–14.

    Article  Google Scholar 

  • Hobbs, R. J., S. Arico, J. Aronson, J. S. Baron, P. Bridgewater, V. A. Cramer, et al., 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography 15: 1–7.

    Article  Google Scholar 

  • Jeppesen, E., M. Meerhoff, T. A. Davidson, D. Trolle, M. Søndergaard, T. L. Lauridsen, M. Beklioǧlu, S. Brucet, P. Volta, I. González-Bergonzoni & A. Nielsen, 2014. Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology 73: 88–111.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept. International Large River Symposium 110–127.

  • Komárek, J. & K. Anagnostidis, 1989. Modern approach to the classification of cyanophytes 4 – Nostocales. Algological Studies 56: 247–345.

    Google Scholar 

  • Komárek, J. & B. Fott, 1983. Chlorophyceae – Chlorococcales. Das Phytoplankton des Süsswassers: Systematic und Biologie E. Schweizerbart’sche Verlagsbuchhandling (Nägele u. Obermiller)., Stuttgart.

  • Koste, W., 1978. Rotatoria die Rädertiere Mitteleuropas begründet von Max Voight. Monogononta, Gebrüder Borntraeger, Berlin:

    Google Scholar 

  • Landeiro, V. L., B. Franz, J. Heino, T. Siqueira & L. M. Bini, 2018. Species-poor and low-lying sites are more ecologically unique in a hyperdiverse Amazon region: evidence from multiple taxonomic groups. Diversity and Distributions 24: 966–977.

    Article  Google Scholar 

  • Lansac-Tôha, F., C. Bonecker, L. Velho, N. Simões, J. Dias, G. Alves & E. Takahashi, 2009. Biodiversity of zooplankton communities in the Upper Paraná River floodplain: interannual variation from long-term studies. Brazilian Journal of Biology 69: 539–549.

    Article  Google Scholar 

  • Lansac-Tôha, F. M., J. Heino, B. A. Quirino, G. A. Moresco, O. Peláez, B. R. Meira, L. C. Rodrigues, S. Jati, F. A. Lansac-Tôha & L. F. M. Velho, 2019. Differently dispersing organism groups show contrasting beta diversity patterns in a dammed subtropical river basin. Science of the Total Environment 691: 1271–1281.

    Article  PubMed  Google Scholar 

  • Legendre, P., F. J. Lapointe & P. Casgrain, 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75: 435–450.

    Article  Google Scholar 

  • Lennox, R. J., D. A. Crook, P. B. Moyle, D. P. Struthers & S. J. Cooke, 2019. Toward a better understanding of freshwater fish responses to an increasingly drought-stricken world. Reviews in Fish Biology and Fisheries 29: 71–92.

    Article  Google Scholar 

  • Lopes, P. M., L. M. Bini, S. A. J. Declerck, V. F. Farjalla, L. C. G. Vieira, C. C. Bonecker, F. A. Lansac-Toha, F. A. Esteves & R. L. Bozelli, 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS ONE 9: e109581.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lourenço, L. S., I. M. Fernandes, J. Penha & L. A. F. Mateus, 2012. Persistence and stability of cichlid assemblages in neotropical floodplain lagoons. Environmental Biology Fish 93: 427–437.

    Article  Google Scholar 

  • Lv, A., B. Qu, S. Jia & W. Zhu, 2019. Influence of three phases of El Niño-Southern Oscillation on daily precipitation regimes in China. Hydrology and Earth System Sciences 23: 883–896.

    Article  Google Scholar 

  • Magalhães, M. F., P. Beja, I. J. Schlosser & M. J. Collares-Pereira, 2007. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshwater Biology 52: 1494–1510.

    Article  Google Scholar 

  • Maloufi, S., A. Catherine, D. Mouillot, C. Louvard, A. Couté, C. Bernard & M. Troussellier, 2016. Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshwater Biology 61: 633–645.

    Article  Google Scholar 

  • Matsumura-Tundisi, T., 1986. Latitudinal distribution of Calanoida Copepods in freshwater aquatic systems of Brazil. Revista Brasileira De Biologia = Brazilian Journal of Biology 46: 527–553.

    Google Scholar 

  • Mayora, G., M. Devercelli & F. Giri, 2013. Spatial variability of chlorophyll-a and abiotic variables in a river–floodplain system during different hydrological phases. Hydrobiologia 717: 51–63.

    Article  CAS  Google Scholar 

  • Mayora, G., P. Scarabotti, B. Schneider, P. Alvarenga & M. Marchese, 2020. Multiscale environmental heterogeneity in a large river-floodplain system. Journal of South American Earth Sciences 100: 102546.

    Article  Google Scholar 

  • Milly, P. C. D., K. A. Dunne & A. V. Vecchia, 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438: 347–350.

    Article  CAS  PubMed  Google Scholar 

  • Moi, D. A., J. Ernandes-Silva, M. T. Baumgartner & R. P. Mormul, 2020. The effects of river-level oscillations on the macroinvertebrate community in a river–floodplain system. Limnology 21: 219–232.

    Article  Google Scholar 

  • Morais, G. F., L. G. dos Santos Ribas, J. C. G. Ortega, J. Heino & L. M. Bini, 2018. Biological surrogates: a word of caution. Ecological Indicators 88: 214–218.

    Article  Google Scholar 

  • Morais-Junior, C. S., L. P. Diniz, F. D. R. Sousa, T. Gonçalves-Souza, L. M. A. Elmoor-Loureiro & M. Melo Júnior, 2019a. Bird feet morphology drives the dispersal of rotifers and microcrustaceans in a Neotropical temporary pond. Aquatic Sciences 81: 1–9.

    Article  Google Scholar 

  • Morais-Junior, C. S., L. P. Diniz, S. L. D. N. Filho, M. T. D. S. Brito, A. D. O. Silva, G. J. B. De Moura & M. Melo Júnior, 2019b. Zooplankton associated with phytotelms and treefrogs in a neotropical forest. Iheringia – Serie Zoologia 109: 1–8.

    Article  Google Scholar 

  • Morden, R., A. Horne, N. R. Bond, R. Nathan & J. D. Olden, 2021. Small artificial impoundments have big implications for hydrology and freshwater biodiversity. Frontiers in Ecology and the Environment 20: 141–146.

    Article  Google Scholar 

  • Mosley, L. M., 2015. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Science Reviews 140: 203–214.

    Article  CAS  Google Scholar 

  • Naeem, S., J. E. Duffy & E. Zavaleta, 2012. The functions of biological diversity in an age of extinction. Science 336: 1401–1406.

  • Neiff, J. J., 1990. Ideas para la interpretación ecologica del Parana. Interciencia 15: 424–441.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, K. Roeland, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2019. vegan: Community Ecology Package. R package version 2.5-5. https://cran.r-project.org/package=vegan.

  • Olden, J. D., 2006. Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography 33: 2027–2039.

    Article  Google Scholar 

  • Olden, J. D., N. L. R. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19: 18–24.

    Article  PubMed  Google Scholar 

  • Olden, J. D., L. Comte & X. Giam, 2018. The homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota 36: 23–36.

    Article  Google Scholar 

  • Oliveira, A. G., L. C. Gomes, J. D. Latini & A. A. Agostinho, 2014. Implications of using a variety of fishing strategies and sampling techniques across different biotopes to determine fish species composition and diversity. Natureza & Conservação 2: 112–117.

    Article  Google Scholar 

  • Oliveira, A. G., H. I. Suzuki, L. C. Gomes & A. A. Agostinho, 2015. Interspecific variation in migratory fish recruitment in the Upper Paraná River: effects of the duration and timing of floods. Environmental Biology of Fishes 98: 1327–1337.

    Article  Google Scholar 

  • Oliveira, A. G., M. T. Baumgartner, L. C. Gomes, R. M. Dias & A. A. Agostinho, 2018. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology 63: 293–305.

    Article  CAS  Google Scholar 

  • Ota, R. R., G. C. Deprá, W. J. da Graça & C. S. Pavanelli, 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology 16: 1–111.

    Article  Google Scholar 

  • Padial, A. A., P. Carvalho, S. M. Thomaz, S. M. Boschilia, R. B. Rodrigues & J. T. Kobayashi, 2009. The role of an extreme flood disturbance on macrophyte assemblages in a Neotropical floodplain. Aquatic Sciences 71: 389–398.

    Article  Google Scholar 

  • Padial, A. A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9: 1–8.

    Article  Google Scholar 

  • Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton and the mystery of the Red Cock. Hydrobiologia 653: 45–64.

    Article  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.

    Article  CAS  PubMed  Google Scholar 

  • Petsch, D. K., 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology 101: 113–122.

    Article  Google Scholar 

  • Petsch, D. K., K. Cottenie, A. A. Padial, J. D. Dias, C. C. Bonecker, S. M. Thomaz & A. S. Melo, 2021. Floods homogenize aquatic communities across time but not across space in a Neotropical floodplain. Aquatic Sciences 83: 1–11.

    Article  Google Scholar 

  • Pinceel, T., L. Brendonck & B. Vanschoenwinkel, 2016. Propagule size and shape may promote local wind dispersal in freshwater zooplankton-a wind tunnel experiment. Limnology and Oceanography 61: 122–131.

    Article  Google Scholar 

  • Pineda, A., Ó. Peláez, J. D. Dias, B. T. Segovia, C. C. Bonecker, L. F. M. Velho & L. C. Rodrigues, 2019. The El Niño Southern Oscillation (ENSO) is the main source of variation for the gamma diversity of plankton communities in subtropical shallow lakes. Aquatic Sciences 81: 1–15.

    Article  CAS  Google Scholar 

  • Pineda, A., P. Iatskiu, S. Jati, A. C. M. Paula, B. F. Zanco, C. C. Bonecker, G. A. Moresco, L. A. Ortega, Y. R. Souza & L. C. Rodrigues, 2020. Damming reduced the functional richness and caused the shift to a new functional state of the phytoplankton in a subtropical region. Hydrobiologia 847: 3857–3875.

    Article  Google Scholar 

  • Pinha, G. D., D. K. Petsch, F. H. Ragonha, R. Guglielmetti, C. G. Bilia, R. P. Tramonte & A. M. Takeda, 2016. Benthic invertebrates nestedness in flood and drought periods in a Neotropical floodplain: looking for the richest environments. Acta Limnologica Brasiliensia. https://doi.org/10.1590/S2179-975X1316.

    Article  Google Scholar 

  • Podani, J. & D. Schmera, 2011. A new conceptual and methodological framework for exploring and explaining pattern in presence – absence data. Oikos 120: 1625–1638.

    Article  Google Scholar 

  • Poff, N. L. R., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104: 5732–5737.

    Article  CAS  Google Scholar 

  • R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/.

  • Reid, J. W., 1985. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boletim De Zoologia 9: 17–143.

    Article  Google Scholar 

  • Roberto, M., N. Santana & S. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.

    Article  CAS  Google Scholar 

  • Rocha, P. C., 2010. Indicators of hydrologic alteration in the high Parana River catchment: human interventions and implications for dynamic of the fluvial environment. Sociedade & Natureza 22: 191–211.

    Article  Google Scholar 

  • Romero, G. Q., D. A. Moi, L. N. Nash, P. A. Antiqueira, R. P. Mormul & P. Kratina, 2021. Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biology Letters 17: 20210137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarremejane, R., M. Canedo-Argüelles, N. Prat, H. Mykrä, T. Muotka & N. Bonada, 2017. Do metacommunities vary through time? Intermittent rivers as model systems. Journal of Biogeography 44: 2752–2763.

    Article  Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Segers, H., 1995. Rotifera: the Lecanidae (Monogonta) Guides to the identification of the micro invertebrates of the continental water of the world.

  • Simões, N. R., F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2012. Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. Revista De Biologia Tropical 60: 1819–1836.

    PubMed  Google Scholar 

  • Simões, N. R., J. D. Dias, C. M. Leal, L. S. M. Braghin, F. A. Lansac-Tôha & C. C. Bonecker, 2013. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a neotropical floodplain. Aquatic Sciences 75: 607–617.

    Article  Google Scholar 

  • Socolar, J. B., J. J. Gilroy, W. E. Kunin & D. P. Edwards, 2016. How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution 31: 67–80.

    Article  Google Scholar 

  • Souza Filho, E., 2009. Evaluation of the Upper Paraná River discharge controlled by reservoirs. Brazilian Journal of Biology 69: 707–716.

    Article  CAS  Google Scholar 

  • Swanson, A. C., D. Kaplan, K. Ben Toh, E. E. Marques & S. A. Bohlman, 2021. Changes in floodplain hydrology following serial damming of the Tocantins River in the eastern Amazon. Science of the Total Environment 800: 149494.

    Article  CAS  PubMed  Google Scholar 

  • Talbot, C. J., E. M. Bennett, K. Cassell, D. M. Hanes, E. C. Minor, H. Paerl, P. A. Raymond, R. Vargas, P. G. Vidon, W. Wollheim & M. A. Xenopoulos, 2018. The impact of flooding on aquatic ecosystem services. Biogeochemistry 141: 439–461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Tickner, D., J. J. Opperman, R. Abell, M. Acreman, A. H. Arthington, S. E. Bunn, S. J. Cooke, J. Dalton, W. Darwall, G. Edwards, I. Harrison, K. Hughes, T. Jones, D. Leclère, A. J. Lynch, P. Leonard, M. E. McClain, D. Muruven, J. D. Olden, S. J. Ormerod, J. Robinson, R. E. Tharme, M. Thieme, K. Tockner, M. Wright & L. Young, 2020. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70: 330–342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuomisto, H., 2010. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33: 2–22.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilung Internationale Vereinigung Für Theoretische Unde Amgewandte Limnologie 9: 1–39.

    Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, Springer, New York:

    Book  Google Scholar 

  • Zarfl, C., A. E. Lumsdon, J. Berlekamp, L. Tydecks & K. Tockner, 2015. A global boom in hydropower dam construction. Aquatic Sciences 77: 161–170.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Council for Scientific and Technological Development (CNPq) for granting a doctoral scholarship to the first author (Process 141914/2017-3), a postdoctoral fellowship to DKP (Process 155580/2018-3), and a research scholarship to CCB. The authors also thank the “Long-Term Ecological Research” (PELD/CNPq) for financial support, as well as the Research Center in Limnology, Ichthyology, and Aquaculture (Nupélia) and the Graduate Program in Ecology of Inland Water Ecosystems (PEA) for logistical support. We are grateful to all researchers from the phytoplankton, zooplankton, and fish laboratories (Nupélia/PEA/UEM) for providing data and field support across all studied years through PELD-sítio 6. The fish collection methodology used in this study was approved by the Ethics Committee on Animal Use of the State University of Maringá (CEUA/UEM) and by the National Council for Control of Animal Experimentation (CONCEA - #1420221018(ID 001974)).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leidiane Pereira Diniz.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling editor: Katya E. Kovalenko

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 918 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, L.P., Petsch, D.K., Mantovano, T. et al. A prolonged drought period reduced temporal β diversity of zooplankton, phytoplankton, and fish metacommunities in a Neotropical floodplain. Hydrobiologia 850, 1073–1089 (2023). https://doi.org/10.1007/s10750-023-05140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05140-7

Keywords

Navigation