Skip to main content
Log in

Ontogenic phototactic behaviors of larval stages in intertidal barnacles

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

During larval development of the intertidal barnacle Fistulobalanus albicostatus, larvae in the naupliar stages I and II (NI&II) possess a single naupliar eye, and later develop additional pair of compound eyes in the naupliar VI (NVI) and cyprid stages. These eyes showed light wavelength-dependent absorbances; where the highest absorbance was within 550 to 600 nm. The phototaxis of each stage was determined under light irradiation at six wavelengths (375, 470, 515, 525, 660, and 735 nm) and at three intensities (5, 15, and 25 W/m2), except for the 735 nm treatment which was irradiated at 25, 50, and 100 lx. NI&II larvae showed no clear pattern of phototaxis under the assessed light conditions. NVI and cyprids exhibited strong positive phototaxis under the assessed light conditions, except under 375 nm at 5 and 15 W/m2 where negative phototaxis was detected. Furthermore, the settlement behavior of cyprids was examined under 375 nm at the three intensities, and under the other five wavelengths at 25 W/m2 or 100 lx. The highest and lowest rates of settlement occurred at 470 and 375 nm, respectively. The results provide a valuable insight into the light-response mechanisms that potentially determine the distribution of barnacle larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data used in this study are available from the authors upon reasonable request.

References

  • Aldred, N. & A. S. Clare, 2008. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. Biofouling 24: 351–363.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, H., D. J. Crisp & H. T. Powell, 1951. Observations on the orientation of some species of barnacles. Journal of Animal Ecology 20: 227–241.

    Article  Google Scholar 

  • Benfield, M. C. & T. J. Minello, 1996. Relative effects of turbidity and light intensity on relative distance and feeding of an estuarine fish. Environmental Biology and Fishes 46: 211–216.

    Article  Google Scholar 

  • Bertness, M. D. & S. D. Gaines, 1993. Larval dispersal and local adaptation in acorn barnacles. Evolution 47: 316–320.

    Article  PubMed  Google Scholar 

  • Blaxter, J. H. S., 1968. Visual thresholds and spectral sensitivity of herring larvae. The Journal of Experimental Biology 48: 39–53.

    Article  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brown, H. M. & M. C. Cornwall, 1975. Spectral correlates of a quasi-stable depolarization in barnacle photoreceptor following red light. The Journal of Physiology 248: 555–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, H. M. & R. W. Meech, 1979. Light induced changes of internal pH in a barnacle photoreceptor and the effect of internal pH on the receptor potential. The Journal of Physiology 297: 73–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, B. K. K., 2007. Ecology and biodiversity of rocky intertidal barnacles along a latitudinal gradient; Japan, Taiwan and Hong Kong. Publ. SMBL SPS. Special Publication Series 8: 1–10.

    Article  Google Scholar 

  • Chan, B. K. K. & P. T. Y. Leung, 2007. Antennular morphology of the cypris larvae of the mangrove barnacle Fistulobalanus albicostatus (Cirripedia: Thoracica: Balanomorpha). Journal of the Marine Biological Association of the United Kingdom 87: 913–915.

    Article  Google Scholar 

  • Chan, B. K. K., J. T. Hoeg & R. Kado, 2014. Thoracica. In Martin, J. W., J. Olesen & J. T. Høeg (eds), Atlas of Crustacean Larvae John Hopkins University Press, Baltimore: 116–121.

    Google Scholar 

  • Chang, Y. W., J. S. M. Chan, R. Hayashi, T. Shuto, L. M. Tsang, K. H. Chu & B. K. K. Chan, 2017. Genetic differentiation of the soft shore barnacle Fistulobalanus albicostatus (Cirripedia: Thoracica: Balanomorpha) in the West Pacific. Marine Ecology-an Evolutionary Perspective 38: e12422.

    Article  Google Scholar 

  • Chiang, W. L., D. W. T. Au, P. K. N. Yu & R. S. S. Wu, 2003. UV-B damages eyes of barnacle larvae and impairs their photoresponses and settlement success. Environmental Science & Technology 37: 1089–1092.

    Article  CAS  Google Scholar 

  • Chiang, W. L., R. S. S. Wu, P. K. N. Yu & D. W. T. Au, 2007. Are barnacle larvae able to escape from the threat of UV? Marine Biology 151: 703–711.

    Article  Google Scholar 

  • Connell, J. H., 1961. Effects of competition, predation by Tharis lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecological Monographs 31: 61–104.

    Article  Google Scholar 

  • Crisp, D. J. & D. A. Ritz, 1973. Responses of cirripede larvae to light. I. Experiments with White Light. Marine Biology 23: 327–335.

    Article  Google Scholar 

  • Davis, J. & D. Madison, 2000. The ontogeny of light-dark response in Triops longicaudatus as a response to changing selective pressures. Crustaceana 73: 283–288.

    Article  Google Scholar 

  • Forward, R. B., Jr. & J. D. Costlow Jr., 1974. The ontogeny of phototaxis by larvae of the crab Rhithropanopeus harrisii. Marine Biology 26: 27–33.

    Article  Google Scholar 

  • Gouveia, G. R., G. S. Trindade, L. E. M. Nery & J. H. Muelbert, 2015. UVA and UVB penetration in the water column of a South West Atlantic warm temperate Estuary and its effects on cells and fish larvae. Estuaries and Coasts 38: 1147–1162.

    Article  CAS  Google Scholar 

  • Häder, D.-P., H. D. Kumar, R. C. Smith & R. C. Worrest, 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical and Photobiological Sciences 6: 267–285.

    Article  PubMed  Google Scholar 

  • Hallberg, E. & R. Elofsson, 1983. The larval compound eyes of barnacles. Journal of Crustacean Biology 3: 17–24.

    Article  Google Scholar 

  • Hanani, M. & P. Hillman, 1976. Adaptation and facilitation in the barnacle photoreceptor. The Journal of General Physiology 67: 235–276.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, P. J. H. & D. C. Sandeman, 1999. Morphology of the nervous system of the barnacle cypris larva (Balanus amphitrite Darwin) revealed by light and electron microscopy. Biology Bulletin 197: 144–158.

    Article  CAS  Google Scholar 

  • Hiro, M., S. Nagayama, A. Kawabe & K. Yamashita, 1990. Influence of UV-irradiation on the nauplius larvae of the barnacle Chthamalus sp. Denki Kagaku Oyobi Kogyo Butsuri Kagaku 58: 629–637.

    Article  Google Scholar 

  • Hung, O. S., L. A. Gosselin, V. Thiyagarajan, R. S. S. Wu & P. Y. Qian, 2005. Do effects of ultraviolet radiation on microbial films have indirect effects on larval attachment of the barnacle Balanus amphitrite? Journal of Experimental Marine Biology and Ecology 323: 16–26.

    Article  Google Scholar 

  • Kamiya, K., K. Yamashita, T. Yanagawa, T. Kawabata & K. Watanabe, 2012. Cypris larvae (Cirripedia: Balanomorpha) display auto-fluorescence in nearly species-specific patterns. Zoological Science 29: 247–253.

    Article  PubMed  Google Scholar 

  • Khandeparker, L. & A. C. Anil, 2007. Underwater adhesion: the barnacle way. International Journal of Adhesion and Adhesives 27: 165–172.

    Article  CAS  Google Scholar 

  • Kim, H.-J., C. Sawada & A. Hagiwara, 2014. Behavior and reproduction of the rotifer Brachionus plicatilis species complex under different light wavelengths and intensities. International Review of Hydrobiology 99: 151–156.

    Article  Google Scholar 

  • Kim, Y., J. Lee, H. Kim & J. Jung, 2016. Comparison of population genetic structure of two seashore-dwelling animal species, periwinkle Littorina brevicula and acorn barnacle Fistulobalanus albicostatus from Korea. Animal Systematics, Evolution and Diversity 32: 105–111.

    Article  Google Scholar 

  • Kim, H.-J., J.-S. Lee & A. Hagiwara, 2018. Phototactic behavior of live food rotifer Brachionus plicatilis species complex and its significance in larviculture: a review. Aquaculture 497: 253–259.

    Article  Google Scholar 

  • Kim, H.-J., T. Yamade, K. Iwasaki, H. S. Marcial & A. Hagiwara, 2019. Phototactic behavior of the marine harpacticoid copepod Tigriopus japonicus related to developmental stage under various light conditions. Journal of Experimental Marine Biology and Ecology 518: 151183.

    Article  Google Scholar 

  • Kim, H.-J., Y. Suematsu, H. Kaneda & C. G. Satuito, 2021. Light wavelength and intensity effects on larval settlement in the Pacific oyster Magallana gigas. Hydrobiologia 848: 1611–1621.

    Article  Google Scholar 

  • Kon-Ya, K. & W. Miki, 1994. Effects of environmental factors on larval settlement of the barnacle Balanus amphitrite reared in the laboratory. Fisheries Science 60: 563–565.

    Article  CAS  Google Scholar 

  • Lang, W. H., R. B. Forward & D. C. Miller, 1979. Behavioral responses of Balanus improvises nauplii to light intensity and spectrum. Biology Bulletin 157: 166–181.

    Article  Google Scholar 

  • Leslie, H. M., 2005. Positive intraspecific effects trump negative effects in high-density barnacle aggregations. Ecology 86: 2716–2725.

    Article  Google Scholar 

  • Liu, J.-Y., C.-C. Wang & L.-S. Chou, 2016. Ontogenic change in phototaxis of the clam shrimp Eulimnadia braueriana Ishikawa, 1895 (Branchiopoda: Spinicaudata). Journal of Crustacean Biology 36: 33–38.

    Article  CAS  Google Scholar 

  • Lynn, K. D., P. T. Flynn, K. Manríquez, P. H. Manríquez, J. Pulgar, C. Duarte & P. A. Quijón, 2021. Artificial light at night alters the settlement of acorn barnacles on a man-made habitat in Atlantic Canada. Marine Pollution Bulletin 163: 111928.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, K., M. Kamoshida & Y. Masuda, 2019. Wavelength-specific thresholds of artificially reared Japanese eel Anguilla japonica larvae determined from negative-phototactic behaviours. Journal of Fish Biology 95: 1040–1045.

    Article  PubMed  Google Scholar 

  • Matsumura, K. & P.-Y. Qian, 2014. Larval vision contributes to gregarious settlement in barnacles: adult red fluorescence as a possible visual signal. The Journal of Experimental Biology 217: 743–750.

    Article  PubMed  Google Scholar 

  • Matsumura, K., M. Nagano & N. Fusetani, 1998. Purification of a larval settlement-inducing protein complex (SIPC) of the barnacle, Balanus amphitrite. Journal of Experimental Zoology 281: 12–20.

    Article  Google Scholar 

  • McCarthy, D. A., R. B. Forward Jr. & C. M. Young, 2002. Ontogeny of phototaxis and geotaxis during larval development of the sabellariid polychaete Phragmatopoma lapidosa. Marine Ecology Progress Series 241: 215–220.

    Article  Google Scholar 

  • Menge, B. A., 1976. Organization of the new England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecological Monographs 46: 355–393.

    Article  Google Scholar 

  • Nybakken, J. W., 2001. Marine Biology, Benjamin Cummings, San Francisco:

    Google Scholar 

  • Pfeiffer-Herbert, A. S., M. A. McManus, P. T. Raimondi, Y. Chao & F. Chai, 2007. Dispersal of barnacle larvae along the central California coast: A modeling study. Limnology and Oceanogrphy 52: 1559–1569.

    Article  Google Scholar 

  • Qian, P.-Y., S. C. K. Lau, H.-U. Dahms, S. Dobretsov & T. Harder, 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Journal of Marine Biotechnology 9: 399–410.

    Article  CAS  Google Scholar 

  • Takenaka, M., A. Suzuki, T. Yamamoto, M. Yamamoto & M. Yoshida, 1993. Remodeling of the nauplius eye into the adult ocelli during metamorphosis of the barnacle, Balanus amphitrite hawaiiensis. Development, Growth & Differentiation 35: 245–255.

    Article  Google Scholar 

  • Taki, Y., Y. Ogasawara, Y. Ido & N. Yokoyama, 1980. Color factors influencing larval settlement of barnacles, Balanus amphitrite subspp. Nippon Suisan Gakkaishi 46: 133–138.

    Article  Google Scholar 

  • Tapia, F. J. & J. Pineda, 2007. Stage-specific distribution of barnacle larvae in nearshore waters: potential for limited dispersal and high mortality rates. Marine Ecology Progress Series 342: 177–190.

    Article  Google Scholar 

  • Thiyagarajan, V., K. V. K. Nair, T. Subramoniam & V. P. Venugopalan, 2002. Larval settlement behaviour of the barnacle Balanus reticulatus in the laboratory. Journal of the Marine Biological Association of the United Kingdom 82: 579–582.

    Article  Google Scholar 

  • Thorson, G., 1964. Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates. Ophelia 1: 167–208.

    Article  Google Scholar 

  • Walley, L. J., 1969. Studies on the larval structure and metamorphosis of Balanus balanoides (L.). Philosophical Transactions of the Royal Society of London Series b, Biological Sciences 256: 237–280.

    Google Scholar 

  • Werner, U., E. Suss-Toby, A. Rom & B. Minke, 1992. Calcium is necessary for light excitation in barnacle photoreceptors. Journal of Comparative Physiology A 170: 427–434.

    Article  CAS  Google Scholar 

  • Watanabe, H., J. T. Hoeg, B. K. K. Chan, R. Kado, S. Kojima & A. Sari, 2008. First report of antennular attachment organs in a barnacle nauplius larva. Journal of Zoology (london) 274: 284–291.

    Article  Google Scholar 

  • Yorisue, T., R. Kado, H. Watanabe, J. T. Hoeg, K. Inoue, S. Kojima & B. K. K. Chan, 2013. Influence of water temperature on the larval development of Neoverruca sp. and Ashinkailepas seepiophila -Implications for larval dispersal and settlement in the vent and seep environments. Deep-Sea Research Part I-Oceanographic Research Papers 71: 33–37.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science (No. 19K15897 to H-J Kim). The authors would also like to acknowledge all those including Prof. A. Hagiwara who have contributed to enhancing the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HK: conceptualization, methodology, data analysis, visualization, funding acquisition, manuscript writing, supervision; TA: methodology, investigation, formal analysis, data curation, validation, visualization; YS: methodology, visualization; CGS: resources, data curation, manuscript review.

Corresponding author

Correspondence to Hee-Jin Kim.

Ethics declarations

Conflict of interest

The authors declare that: (i) no support, financial or otherwise, has been received from any organization that may have an interest in this paper; and (ii) there are no other personal relationships or activities that could appear to have influenced the submitted work.

Additional information

Handling editor: Iacopo Bertocci

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Araki, T., Suematsu, Y. et al. Ontogenic phototactic behaviors of larval stages in intertidal barnacles. Hydrobiologia 849, 747–761 (2022). https://doi.org/10.1007/s10750-021-04744-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04744-1

Keywords

Navigation