Skip to main content
Log in

Light wavelength and intensity effects on larval settlement in the Pacific oyster Magallana gigas

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Oyster larvae initially have an eyespot on settlement stage (pediveligers). This study investigated the eyespot with light wavelength-dependent absorbance, and its functional details for settlement in the Pacific oyster Magallana gigas larvae. Eyespot efficiently absorbed 500–650 nm of light wavelength. Based on the eyespot absorbance, pediveligers were subjected to different light conditions with light-emitting diodes (LEDs): near ultraviolet (NUV), blue, white, green, red, and near infrared (NIR), set at 3 intensities (5, 15, 25 W/m2, except for NIR, which was at 25, 50, 100 lux). LEDs modulated at each intensity were continuously irradiated for 2 days, and the number of settled larvae on a substrate of shell chips was counted daily. NUV at 15, 25 W/m2, and white and green light at 5, 15 W/m2 disrupted larval settlement, whereas red at 25 W/m2 and NIR at 100 lux showed strong settlement-inducing activities. Red and NIR were further tested with ceramic paper substrates; inert substrates. These lights maintained their performance, with settlement rates higher than controls in darkness. Our findings contribute to the further understanding of the function of eyespot in the settlement of oyster larvae, and to establish criteria to evaluate light pollution levels for protecting benthic ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, S. K. & D. Bushek, 1992. Large-scale production of triploid oysters, Crassostrea virginica (Gmelin), using “stripped” gametes. Aquaculture 103: 241–251.

    Article  Google Scholar 

  • Arini, E. & N. T. S. P. Jaya, 2011. The effect of various spat collector materials for spat attachment of peal oyster (Pinctada maxima). Journal of Costal Development 15: 34–44.

    Google Scholar 

  • Baker, P. & R. L. Mann, 1998. Response of settling oyster larvae, Crassostrea virginica, to specific portions of the visible light spectrum. Journal of Shellfish Research 17: 1081–1083.

    Google Scholar 

  • Buitrago, E. & D. Alvarado, 2005. A highly efficient oyster spat collector made with recycled materials. Aquaculture Engineering 33: 63–72.

    Article  Google Scholar 

  • Christo, S. W., A. L. Ferreira-Jr, A. C. Cruz-Kaled & T. M. Absher, 2016. Recruitment of oysters of Crassostrea genus (Bivalvia, Ostreidae) in Guaratuba Bay, PR, Brazil. Pan-American Journal of Aquatic Sciences 11: 301–308.

    Google Scholar 

  • Cole, H., 1938. The fate of the larval organs in the metamorphosis of Ostrea Edulis. Journal of the Marine Biological Association of the United Kingdom 22: 469–484.

    Article  Google Scholar 

  • Davies, T. W., J. P. Duffy, J. Bennie & K. J. Gaston, 2014. The nature, extent, and ecological implications of marine light pollution. Frontiers in Ecology and the Environment 12: 347–355.

    Article  Google Scholar 

  • Escapa, C. M., J. P. Isacch, P. Daleo, J. Alberti, O. Iribarne, M. Borges, E. P. D. Santos, D. A. Gagliardini & M. Lasta, 2004. The distribution and ecological effects of the introduced Pacific oyster Crassostrea gigas (Thunberg, 1793) in Northern Patagonia. Journal of Shellfish Research 23: 765–772.

    Google Scholar 

  • EOBRT, 2007. Eastern Oyster Biological Review Team. Status review of the eastern oyster (Crassostrea virginica). Report to the Nation Marine Fisheries Service, Northeast Regional Office. February 16, 2007. NOAA Tech. Memo. NMFS F/SPO-88.

  • Falchi, F., P. Cinzano, D. Duriscoe, C. C. Kyba, C. D. Elvidge, K. Baugh, B. A. Portnov, N. A. Rybnikova & R. Furgoni, 2016. The new world atlas of artificial night sky brightness. Science Advances 2: e1600377.

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO, 2005–2020. Cultured Aquatic Species Information Programme. Crassostrea gigas. Cultured Aquatic Species Information Programme. Text by Helm MM. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 13 April 2005. [Cited 19 May 2020].

  • Fisher, W. S., 2004. Relationship of amebocytes and terrestrial elements to adult shell deposition in eastern oysters. Journal of Shellfish Research 23: 353–367.

    Google Scholar 

  • Forward, R. B. & T. W. Cronin, 1979. Spectral sensitivity of larvae from intertidal crustaceans. Journal of Comparative Physiology A 133: 311–315.

    Article  Google Scholar 

  • Gouveia, G. R., G. S. Trindade, L. E. M. Nery & J. H. Muelbert, 2015. UVA and UVB penetration in the water column of a South West Atlantic warm temperate Estuary and its effects on cells and fish larvae. Estuaries and Coasts 38 (4): 1147–1162

    Article  CAS  Google Scholar 

  • Häder, D.-P., H. D. Kumar, R. C. Smith & R. C. Worrest, 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical and Photobiological Sciences 6: 267–285.

    Article  PubMed  Google Scholar 

  • Jo, Q., E. J. Choy, C. K. Kang, H. B. Moon, S. J. Lee, D. H. Kim & J. H. Lee, 2008. Effects of the coastal sediment elutriates containing persistent organic pollutants (POPs) on early reproductive outputs of the Pacific oyster, Crassostrea gigas. Journal of Environmental Biology 29: 507–512.

    PubMed  Google Scholar 

  • Kihara, K., H. Tanigushi, Y. Koibuchi, S. Yamamoto, Y. Kondo & Y. Hosokawa, 2013. Enhancing settlement and growth of corals using feeble electrochemical method. Galaxea, Journal of the Coral Reef Studies 15: 323–329.

    Article  Google Scholar 

  • Kim, H.-J., J.-S. Lee & A. Hagiwara, 2018. Phototactic behavior of live food rotifer Brachionus plicatilis species complex and its significance in larviculture: a review. Aquaculture 497: 253–259.

    Article  Google Scholar 

  • Kim, H.-J., C. Sawada & A. Hagiwara, 2014a. Behavior and reproduction of the rotifer Brachionus plicatilis species complex under different light wavelengths and intensities. International Review of Hydrobiology 99: 151–156.

    Article  Google Scholar 

  • Kim, H.-J., C. Sawada, J.-S. Rhee, J.-S. Lee, K. Suga & A. Hagiwara, 2014b. Nutritional effects on the visual system of the rotifer Brachionus plicatilis sensu stricto (Rotifera: Monogononta). Journal of Experimental Marine Biology and Ecology 460: 177–183.

    Article  Google Scholar 

  • Kim, H.-J., K. Suga & A. Hagiwara, 2013. Effect of light wavelength on the sexual and asexual reproduction of the monogonont rotifer Brachionus manjavacas. Aquaculture Science 61: 261–268.

    Google Scholar 

  • Kurita, M., T. Shimauchi, M. Kobayashi, K. Atarashi, K. Mori & Y. Tokura, 2007. Induction of keratinocyte apoptosis by photosensitizing chemicals plus UVA. Journal of Dermatologycal Science 45: 105–112.

    Article  CAS  Google Scholar 

  • Kyba, C. C., T. Kuester, A. S. de Miguel, K. Baugh, A. Jechow, F. Hölker, J. Bennie, C. D. Elvidge, K. J. Gaston & L. Guanter, 2017. Artificially lit surface of earth at night increasing in radiance and extent. Science Advances 3: e1701528.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang, W. H., R. B. Forward Jr. & D. C. Miller, 1979. Behavioral responses of Balanus improvises nauplii to light intensity and spectrum. Biology Bulletin 157: 166–181.

    Article  Google Scholar 

  • Li, Q., M. Osada, M. Kashihara, K. Hirohashi & A. Kijima, 2000. Effects of ultraviolet irradiation on genetical inactivation and morphological features of sperm of the Pacific oyster Crassostrea gigas. Fisheries Science 66: 91–96.

    Article  CAS  Google Scholar 

  • Liu, Y., D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman & B. J. Tromberg, 1995. Evidence for localized cell heating induced by infrared optical tweezers. Biophysical Journal 68: 2137–2144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsden, J. R., 1988. Light response of the larvae of the serpulid polychaete Galeolaria caespitosa. Marine Biology 99: 397–407.

    Article  Google Scholar 

  • Mazor, T., N. Levin, H. P. Possingham, Y. Levy, D. Rocchini, A. J. Richardson & S. Kark, 2013. Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean. Biological Conservation 159: 63–72.

    Article  Google Scholar 

  • Navarro-Barranco, C. & L. E. Hughes, 2015. Effects of light pollution on the emergent fauna of shallow marine ecosystems: amphipods as a case study. Marine Pollution Bulletin 94: 235–240.

    Article  CAS  PubMed  Google Scholar 

  • Nybakken, J. W., 2001. Marine biology: an ecological approach, 5th ed. Benjamin Cummings, San Francisco: 516.

    Google Scholar 

  • O’Connor, J. J., E. K. Fobert, M. Besson, H. Jacob & D. Lecchini, 2019. Live fast, die young: behavioral and physiological impacts of light pollution on a marine fish during larval recruitment. Marine Pollution Bulletin 146: 908–914.

    Article  PubMed  Google Scholar 

  • Orensanz, J. M. L., E. Schwindt, G. Pastorino, A. Bortolus, G. Casas, G. Darrigran, R. Elias, J. J. Lopez, S. Obenat, M. Pascual, P. Penchaszadeh, M. L. Piriz, F. Scarabino, E. D. Spivak & E. A. Vallarino, 2002. No longer the pristine confines of the world ocean: a survey of exotic marine species in the southwestern Atlantic. Biological Invasions 4: 115–143.

    Article  Google Scholar 

  • Peṅuelas, J. & I. Filella, 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science 3: 151–156.

    Article  Google Scholar 

  • Prytherch, H. F., 1934. The role of copper in the setting, metamorphosis, and distribution of the American oyster, Ostrea virginica. Ecological Monographs 4: 47–107.

    Article  CAS  Google Scholar 

  • Rajapandian, M. E. & C. T. Rajan, 1987. Biological aspects of oysters. Central Maine Fisheries Research Institute (CMFRI) Bulletin 38: 30–39.

  • Rico-Villa, B., S. Pouvreau & R. Robert, 2009. Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture 287: 395–401.

    Article  Google Scholar 

  • Rothschild, B. J., J. S. Ault, P. Goulletquer & M. Héral, 1994. Decline of the Chesapeake Bay oyster population: a century of habitat destruction and overfishing. Marine Ecology Progress Series 111: 29–39.

    Article  Google Scholar 

  • Ruesink, J. L., H. S. Lenihan, A. C. Trimble, K. W. Heiman, F. Micheli, J. E. Byers & M. C. Kay, 2005. Introduction of non-native oysters: ecosystem effects and restoration implications. Annual Review of Ecology, Evolution, and Systematics 36: 643–689.

    Article  Google Scholar 

  • Schulte-Römer, N., J. Meier, M. Söding & E. Dannemann, 2019. The LED paradox: how light pollution challenges experts to reconsider sustainable lighting. Sustainability 11: 6160.

    Article  Google Scholar 

  • Southworth, M. & R. Mann, 2004. Decadal scale changes in seasonal patterns of oyster recruitment in the Virginia sub estuaries of the Chesapeake Bay. Journal of Shellfish Research 23: 391–402.

    Google Scholar 

  • Taylor, J. J., P. C. Southgate & R. A. Rose, 1998. Assessment of artificial substrates for collection of hatchery-reared silver-lip pearl oyster (Pinctada maxima, Jameson) spat. Aquaculture 162: 219–230.

    Article  Google Scholar 

  • Thompson, R. J., R. I. E. Newell, V. S. Kennedy & R. Mann, 1996. Reproductive processes and early development. In Kennedy, V. S., R. I. E. Newell & A. F. Eble (eds.), The Easter Oysters, Crassostrea virginica. Maryland Sea Grant, College Park, Maryland: 335–370.

    Google Scholar 

  • Tronske, N. B., T. A. Parker, H. D. Henderson, J. L. Burnaford & D. C. Zacherl, 2018. Densities and zonation patterns of native and non-indigenous oysters in southern California bays. Wetlands 38: 1313–1326.

    Article  Google Scholar 

  • Turner, E. J., R. K. Zimmer-Faust, M. A. Palmer, M. Luckenbach & N. D. Pentchef, 1994. Settlement of oyster (Crassostrea virginica) larvae: effects of water flow and a water-soluble chemical cue. Limnology and Oceanography 39: 1579–1593.

    Article  CAS  Google Scholar 

  • Ugolini, A., V. Boddi, L. Mercatelli & C. Castellini, 2005. Moon orientation in adult and young sandhoppers under artificial light. Proceedings of the Royal Society B 272: 2189–2194.

    Article  PubMed  Google Scholar 

  • Vasquez, H. E., K. Hashimoto, A. Yoshida, K. Hara, C. C. Imai, K. Kitamura & C. G. Satuito, 2013. A glycoprotein in shells of conspecific induces larval settlement of the Pacific oyster Crassostrea gigas. PLOS ONE 8: e82358.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogeler, S., T. P. Bean, B. P. Lyons & T. S. Galloway, 2016. Dynamics of nuclear receptor gene expression during Pacific oyster development. BMC Developmental Biology 16: 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waldbusser, G. G., E. N. Powell & R. Mann, 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology 94: 895–903.

    Article  Google Scholar 

  • Wu, C., J. Wang, Y. Yang, Z. Li, T. Guo, Y. Li & X. Wang, 2015. Adult Pacific oyster (Crassostrea gigas) may have light sensitivity. PLoS ONE 10: e0140149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, C., Q. Jiang, L. Wei, Z. Cai, J. Chen, W. Yu, C. He, J. Wang, W. Guo & X. Wang, 2018. A rhodopsin-like gene may be associated with the light-sensitivity of adult Pacific oyster Crassostrea gigas. Frontiers Physiology 9: 221.

    Article  Google Scholar 

  • Young, C. M. & F. S. Chia, 1982. Ontogeny of phototaxis during larval development of the sedentary polychaete, Serpula vermicularis (L.). Biology Bulletin 162: 457–468.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the research fellowships for young researchers from the Japan Society for the Promotion of Science (No. 19K15897 to H-J Kim). We deeply appreciate Prof. Hagiwara Atsushi of Nagasaki University who provided the equipment for measurement. The authors also acknowledge all contributors to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jin Kim.

Additional information

Handling editor: Iacopo Bertocci

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Suematsu, Y., Kaneda, H. et al. Light wavelength and intensity effects on larval settlement in the Pacific oyster Magallana gigas. Hydrobiologia 848, 1611–1621 (2021). https://doi.org/10.1007/s10750-021-04550-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04550-9

Keywords

Navigation