Skip to main content

Advertisement

Log in

Modelling the abundance of a non-native mollusk in tropical semi-arid reservoirs

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study aimed to investigate the relative importance of abiotic factors and biotic resistance (expressed as species richness of native macroinvertebrates), through a correlative niche-based model, to explain the abundance of the non-native mollusk Melanoides tuberculata. A total of 478 sites were sampled in six reservoirs in a Brazilian semi-arid region in June, September, December (2014) and March (2015). A niche-based model (BRT's), which included all tested predictor variables explained 41.7% total variation in M. tuberculata abundance. Water depth had the highest relative importance (19.0% of relative contribution) followed by temperature (17.2%) and sediment organic matter content (15.4%). The native macroinvertebrate richness explained only 8.0%, evidencing the smaller role of biotic resistance in explaining M. tuberculata abundance. Our results suggest that factors associated with the extent of species’ niches are more important and can determine the multiple invasion processes of this mollusk, especially in terms of population growth and spread. The low explanatory power of biotic resistance on the abundance and distribution of the invasive mollusk may not necessarily indicate a lack of resistance by the native community, and M. tuberculata is not widespread enough to occupy the total potential range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data generated and analysed in this study are included in this principal file. However, additional information can be requested from the authors.

Code availability

Statistical and richness estimate analyses were performed using the PRIMER-6 + PERMANOVA programme (Systat Software, Cranes Software International Ltd., Anderson et al. 2008; License: AP6100-9622-1934156), EstimateS 9.1.0 and software and MSOffice®.

References

  • AESA, Agência Executiva de Gestão das Águas, Estado da Paraíba – Brasil. http://www.aesa.pb.gov.br/aesa-website/. Consulted 16 Mar 2015.

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, G. Moraes, J. Leonardo & G. Sparovek, 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

    Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. Permanova + for Primer: guide to software and statistical methods. Plymouth: Primer-E Ltd.

  • APHA, 2012. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC:

    Google Scholar 

  • Ashofteh, P.-S., T. Rajaee & P. Golfam, 2017. Assessment of water resources development projects under conditions of climate change using efficiency indexes (EIs). Water Resources Management 31: 3723–3744.

    Google Scholar 

  • Azevêdo, D. J. S., J. E. L. Barbosa, W. I. A. Gomes, D. E. Porto, J. C. Marques & J. Molozzi, 2015. Diversity measures in macroinvertebrate and zooplankton communities related to the trophic status of subtropical reservoirs: contradictory or complementary responses? Ecological Indicators 50: 135–149.

    Google Scholar 

  • Azevêdo, E. L., J. E. Barbosa, L. G. Viana, M. J. P. Anacleto, M. Callisto & J. Molozzi, 2017. Application of a statistical model for the assessment of environmental quality in neotropical semi-arid reservoirs. Environmental Monitoring and Assessment 189: 65.

    Google Scholar 

  • Barney, J. N., M. W. Ho & D. Z. Atwater, 2016. Propagule pressure cannot always overcome biotic resistance: the role of density-dependent establishment in four invasive species. Weed Research 56: 208–218.

    Google Scholar 

  • Blackburn, T. M., F. Essl, T. Evans, P. E. Hulme, J. M. Jeschke, I. Kühn, S. Kumschick, Z. Markova, A. Mrugała, W. Nentwig, J. Pergl, P. Pysek, W. Rabitsch, A. Ricciardi, D. M. Richardson, A. Sendek, M. Vila, J. R. U. Wilson, M. Winter, P. Genovesi & S. Bacher, 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology 12: e1001850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boffi, A. V., 1979. Moluscos brasileiros de interesse médico e econômico São Paulo. HVCITEC 181.

  • Brito, M. F., V. S. Daga & J. R. Vitule, 2020. Fisheries and biotic homogenization of freshwater fish in the Brazilian semiarid region. Hydrobiologia 847: 3877–3895.

    Google Scholar 

  • Byers, J. E. & E. G. Noonburg, 2003. Scale dependent effects of biotic resistance to biological invasion. Ecology 84: 1428–1433.

    Google Scholar 

  • Byers, J. E., R. S. Smith, J. M. Pringle, G. F. Clark, P. E. Gribben, C. L. Hewitt, J. G. Inglis, E. L. Johnston, M. R. Gregory, J. S. John & J. B. Melanie, 2015. Invasion expansion: time since introduction best predicts global ranges of marine invaders. Scientific Reports 5: 12436.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byun, C. & E. J. Lee, 2017. Ecological application of biotic resistance to control the invasion of an invasive plant, Ageratina altissima. Ecology and Evolution 7: 2181–2192.

    PubMed  PubMed Central  Google Scholar 

  • Carboni, M., T. Münkemüller, S. Lavergne, P. Choler, B. Borgy, C. Violle, F. Essl, C. Roquet, F. Munoz, D. Consortium & W. Thuiller, 2016. What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Ecology Letters 19: 219–229.

    PubMed  Google Scholar 

  • Carvalho, A. L. & E. R. Calil, 2000. Chaves de identificação para Famílias de Odonata (Insecta) ocorrentes no Brasil, adulto e larvas. Papéis Avulsos De Zoologia 41: 223–241.

    Google Scholar 

  • Catford, J. A., R. Jansson & C. Nilsson, 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15: 22–40.

    Google Scholar 

  • Catford, J. A., P. A. Vesk, D. M. Richardson & P. Pyšek, 2012. Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Global Change Biology 18: 44–62.

    Google Scholar 

  • Cilia, D. P., A. Sciberras & J. Sciberras, 2013. Two non-indigenous populations of Melanoides tuberculata (Müller, 1774) (Gastropoda, Cerithioidea) in Malta. MalaCo. Journal Électronique De La Malacologie Continentale Française 9: 447–450.

    Google Scholar 

  • Clark, G. F. & E. L. Johnston, 2011. Temporal change in the diversity–invasibility relationship in the presence of a disturbance regime. Ecology Letters 14: 52–57.

    PubMed  Google Scholar 

  • Coelho, P. N., M. A. Fernandez, D. A. S. Cesar, A. M. C. Ruocco & R. Henry, 2018. Updated distribution and range expansion of the gastropod invader Melanoides tuberculata (Müller, 1774) in Brazilian waters. BioInvasions Records 7: 405–409.

    Google Scholar 

  • Colangelo, P., D. Fontaneto, A. Marchetto, A. Ludovisi, A. Basset, L. Bartolozzi, I. Bertani, A. Campanaro, A. Cattaneo, F. Cianferoni, G. Corriero, G. F. Ficetola, F. Nonnis-Marzano, C. Pierri, G. Rossetti, I. Rosati & A. Boggero, 2017. Alien species in Italian freshwater ecosystems: a macroecological assessment of invasion drivers. Aquatic Invasions 12: 299–309.

    Google Scholar 

  • Colautti, R., J. D. Parker, M. W. Cadotte, P. Pyšek, C. S. Brown, D. Sax & D. Richardson, 2014. Quantifying the invasiveness of species. Neobiota 21: 7–27.

    Google Scholar 

  • Collinge, S. K., C. Ray & F. Gerhardt, 2011. Long-term dynamics of biotic and abiotic resistance to exotic species invasion in restored vernal pool plant communities. Ecological Applications 21: 2105–2118.

    PubMed  Google Scholar 

  • Coni, E. O., C. M. Ferreira, P. M. Meirelles, R. Menezes, E. F. Santana, A. P. B. Moreira, G. M. Amado-Filho, B. P. Ferreira, G. H. Pereira-Filho, F. L. Thompson, R. L. Moura & R. B. Francini-Filho, 2017. Modeling abundance, growth, and health of the solitary coral Scolymia wellsi (Mussidae) in turbid SW Atlantic coral reefs. Marine Biology 164: 66.

    Google Scholar 

  • Conn, D. B., 2014. Aquatic invasive species and emerging infectious disease threats: a one health perspective. Aquatic Invasions 9: 383–390.

    Google Scholar 

  • Corrales, X., E. Ofir, M. Coll, M. Goren, D. Edelist, J. J. Heymans & G. Gal, 2017. Modeling the role and impact of alien species and fisheries on the Israeli marine continental shelf ecosystem. Journal of Marine Systems 170: 88–102.

    Google Scholar 

  • Costa, C., S. Ide & C. E. Simonka, 2006. Insetos imaturos: metamorfose e identificação. Holos Editora.

  • Cunningham, A. A., A. P. Dobson & P. J. Hudson, 2012. Disease invasion: impacts on biodiversity and human health. Philosophical Transactions of the Royal Society 367: 2804–2806.

    Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.

    Google Scholar 

  • De Kock, K. N. & C. T. Wolmarans, 2009. Distribution and habitats of Melanoides tuberculata (Müller, 1774) and M. victoriae (Dohrn, 1865) (Mollusca: Prosobranchia: Thiaridae) in South Africa. Water SA 35: 713–720.

    Google Scholar 

  • Derraik, J. G., 2008. The potential significance to human health associated with the establishment of the snail Melanoides tuberculata in New Zealand. The New Zealand Medical Journal 121: 1280.

    Google Scholar 

  • Díaz, S., A. Purvis, J. H. Cornelissen, G. M. Mace, M. J. Donoghue, R. M. Ewers, P. Jordano & W. D. Pearse, 2013. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution 3: 2958–2975.

    PubMed  PubMed Central  Google Scholar 

  • Duggan, I. C., 2002. First record of a wild population of the tropical snail Melanoides tuberculata in New Zealand natural waters. New Zealand Journal of Marine and Freshwater Research 36: 825–829.

    Google Scholar 

  • Ehrenfeld, J. G., 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6: 503–523.

    CAS  Google Scholar 

  • Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.

    CAS  PubMed  Google Scholar 

  • Elton, C. S., 1958. The Ecology of Invasions by Plants and Animals, Methuen, London:

    Google Scholar 

  • Epler, J. H., 2001. Identification manual for the larval chironomidae (diptera) of North and South Carolina. Aquatic Entomologist. North Carolina Department of Environmental and Natural Resources Division of Water Quality.

  • Facon, B., P. Jarne, J. P. Pointier & P. David, 2005. Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. Journal of Evolutionary Biology 18: 524–535.

    CAS  PubMed  Google Scholar 

  • Facon, B., B. J. Genton, J. Shykoff, P. Jarne, A. Estoup & P. David, 2006. A general eco-evolutionary framework for understanding bioinvasions. Trends in Ecology & Evolution 21: 130–135.

    Google Scholar 

  • Fenoglio, S., N. Bonada, S. Guareschi, M. J. López-Rodríguez, A. Millán & J. M. T. Figueroa, 2016. Freshwater ecosystems and aquatic insects: a paradox in biological invasions. Biology Letters 12: 20151075.

    PubMed  PubMed Central  Google Scholar 

  • Fernández, H. R. & E. Domínguez, 2001. Guia para la determinación de los artropodos bentônicos. Sudamericanos. Tucumán. UNT.

  • Flood, P. J., A. Duran, M. Barton, A. E. Mercado-Molina & J. C. Trexler, 2020. Invasion impacts on functions and services of aquatic ecosystems. Hydrobiologia 847: 1571–1586.

    Google Scholar 

  • Fortunato, H., 2015. Mollusks: tools in environmental and climate research. American Malacological Bulletin 33: 310–324.

    Google Scholar 

  • Friedman, J. H., 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis 38: 367–378.

    Google Scholar 

  • Friedman, J., T. Hastie & R. Tibshirani, 2000. Additive logistic regression: a statistical view of boosting. The Annals of Statistics 28: 337–407.

    Google Scholar 

  • Gallardo, B., M. Clavero, M. I. Sánchez & M. Vilà, 2016. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology 22: 151–163.

    PubMed  Google Scholar 

  • Gashtarov, V. & D. Georgiev, 2016. First record of introduction of the tropical snail Melanoides tuberculata (OF Müller, 1774) in Bulgaria (Gastropoda: Thiaridae). Ecologica Montenegrina 5: 26–27.

    Google Scholar 

  • Giovanelli, A., M. V. Vieira & C. L. P. A. C. Silva, 2003. Apparent competition through facilitation between Melanoides tuberculata and Biomphalaria glabrata and the control of schistosomiasis. Memórias Do Instituto Oswaldo Cruz 98: 429–431.

    PubMed  Google Scholar 

  • Gomes, W. I. A., D. da Silva Jovem-Azevêdo, F. F. Paiva, S. V. Milesi & J. Molozzi, 2018. Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: a biomonitoring approach. Ecological Indicators 93: 404–410.

    Google Scholar 

  • Guimarães, C. T., C. P. D. Souza & D. D. M. Soares, 2001. Possible competitive displacement of planorbids by Melanoides tuberculata in Minas Gerais, Brazil. Memórias Do Instituto Oswaldo Cruz 96: 173–176.

    PubMed  Google Scholar 

  • Guo, Q. & A. Symstad, 2008. A two-part measure of degree of invasion for cross-community comparisons. Conservation Biology 22: 666–672.

    PubMed  Google Scholar 

  • Guo, Q., S. Fei, J. S. Dukes, C. M. Oswalt, B. V. Iannone III. & K. M. Potter, 2015. A unified approach for quantifying invasibility and degree of invasion. Ecology 96: 2613–2621.

    PubMed  Google Scholar 

  • Gurevitch, J., G. A. Fox, G. M. Wardle & D. Taub, 2011. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecology Letters 14: 407–418.

    CAS  PubMed  Google Scholar 

  • Havel, J. E., C. E. Lee & M. J. V. Zanden, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.

    Google Scholar 

  • Havel, J. E., K. E. Kovalenko, S. M. Thomaz, S. Amalfitano & L. B. Kats, 2015. Aquatic invasive species: challenges for the future. Hydrobiologia 750: 147–170.

    PubMed  PubMed Central  Google Scholar 

  • Hierro, J. L., J. L. Maron & R. M. Callaway, 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology 93: 5–15.

    Google Scholar 

  • Hijmans, R. J., S. Phillips, J. Leathwick & J. Elith, 2017. Species Distribution Modeling. Available at from ‘dismo’ documentation in R.

  • Holmes, T. P., J. E. Aukema, B. Von Holle, A. Liebhold & E. Sills, 2009. Economic impacts of invasive species in forest past, present, and future. In The Year in Ecology and Conservation Biology, 2009. Annals of the New York Academy of Sciences 1162: 18–38

  • Jackson, M. C. & J. R. Britton, 2014. Divergence in the trophic niche of sympatric freshwater invaders. Biological Invasions 16: 1095–1103.

    Google Scholar 

  • Jovem-Azevêdo, D., J. F. Bezerra-Neto, E. L. Azevêdo, W. I. A. Gomes, J. Molozzi & M. J. Feio, 2019. Dipteran assemblages as functional indicators of extreme droughts. Journal of Arid Environments 164: 12–22.

    Google Scholar 

  • Jovem-Azevêdo, D., J. F. Bezerra-Neto, J. Molozzi & M. J. Feio, 2020. Rehabilitation scenarios for reservoirs: Predicting their effect on invertebrate communities through machine learning. River Research and Applications. https://doi.org/10.1002/rra.3641.

    Article  Google Scholar 

  • Kempel, A., T. Chrobock, M. Fischer, R. P. Rohr & M. van Kleunen, 2013. Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. Proceedings of the National Academy of Sciences of the United States of America 110: 12727–12732.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy, T. A., S. Naeem, K. M. Howe, J. M. Knops, D. Tilman & P. Reich, 2002. Biodiversity as a barrier to ecological invasion. Nature 417: 636–638.

    CAS  PubMed  Google Scholar 

  • Kolding, J. & P. A. van Zwieten, 2012. Relative lake level fluctuations and their influence on productivity and resilience in tropical lakes and reservoirs. Fisheries Research 115: 99–109.

    Google Scholar 

  • Krailas, D., S. Namchote, T. Koonchornboon, W. Dechruksa & D. Boonmekam, 2014. Trematodes obtained from the thiarid freshwater snail Melanoides tuberculata (Müller, 1774) as vector of human infections in Thailand. Zoosystematics and Evolution 90: 57–86.

    Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.

    Google Scholar 

  • Lima, L. F. O., B. I. A. L. Brasil & M. J. Martins-Silva, 2013. Melanoides tuberculata (Müller, 1774): northeastern dispersal in the São Francisco basin, Brazil. Check List 9: 162–164.

    Google Scholar 

  • Linares, M. S., W. Assis, R. R. de Castro Solar, R. P. Leitão, R. M. Hughes & M. Callisto, 2019. Small hydropower dam alters the taxonomic composition of benthic macroinvertebrate assemblages in a neotropical river. River Research and Applications 35: 725–735.

    Google Scholar 

  • Linares, M. S., D. R. Macedo, R. L. Massara & M. Callisto, 2020. Why are they here? Local variables explain the distribution of invasive mollusk species in neotropical hydropower reservoirs. Ecological Indicators 117: 106674.

    Google Scholar 

  • Lindim, C., 2015. Modeling the impact of Zebra mussels (Dreissena polymorpha) on phytoplankton and nutrients in a lowland river. Ecological Modelling 301: 17–26.

    CAS  Google Scholar 

  • Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution 20: 223–228.

    Google Scholar 

  • Lohr, C. A., J. Hone, M. Bode, C. R. Dickman, A. Wenger & R. L. Pressey, 2017. Modeling dynamics of native and invasive species to guide prioritization of management actions. Ecosphere 8: e01822.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    CAS  Google Scholar 

  • MacDougall, A. S. & R. Turkington, 2005. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86: 42–55.

    Google Scholar 

  • MacNeil, C., 2019. Differences in the abilities of native and invasive amphipods to tolerate poor water quality and recolonise degraded habitats. Hydrobiologia 834: 119–129.

    CAS  Google Scholar 

  • Magurran, A. E., 2013. Measuring biological diversity. John Wiley & Sons.

  • Maldonado, M. A. & P. R. Martín, 2019. Dealing with a hyper-successful neighbor: effects of the invasive apple snail Pomacea canaliculata on exotic and native snails in South America. Current Zoology 65: 225–235.

    PubMed  Google Scholar 

  • Mata, T. M., N. M. Haddad & M. Holyoak, 2013. How invader traits interact with resident communities and resource availability to determine invasion success. Oikos 122: 149–160.

    Google Scholar 

  • Mazza, G., E. Tricarico, P. Genovesi & F. Gherardi, 2014. Biological invaders are threats to human health: an overview. Ethology Ecology & Evolution 26: 112–129.

    Google Scholar 

  • McLaughlan, C., B. Gallardo & D. C. Aldridge, 2014. How complete is our knowledge of the ecosystem services impacts of Europe’s top 10 invasive species? Acta Oecologica 54: 119–130.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendall/Hunt Publishing Company, Dubuque:

    Google Scholar 

  • Molozzi, J., M. J. Feio, F. Salas, J. C. Marques & M. Callisto, 2013. Maximum ecological potential of tropical reservoirs and benthic invertebrate communities. Environmental Monitoring and Assessment 185: 6591–6606.

    CAS  PubMed  Google Scholar 

  • Morris, T. L., N. N. Barger & M. D. Cramer, 2015. Competitive resistance of a native shrubland to invasion by the alien invasive tree species, Acacia cyclops. Biological Invasions 17: 3563–3577.

    Google Scholar 

  • Moss, B., 2010. Ecology of Freshwaters: A View for the Twenty-Century, Wiley Blackwell, Oxford:

    Google Scholar 

  • Najet, G., D. Sabah & H. Hayet, 2014. Melanoides tuberculata as intermediate host of Centrocestus formosanus (Nishigori, 1924) in Tunisia. African Journal of Biotechnology 13: 2774–2777.

    Google Scholar 

  • Newman, S. P., E. H. Meesters, C. S. Dryden, S. M. Williams, C. Sanchez, P. J. Mumby & N. V. Polunin, 2015. Reef flattening effects on total richness and species responses in the Caribbean. Journal of Animal Ecology 84: 1678–1689.

    PubMed  Google Scholar 

  • Nghiem, L. T., T. Soliman, D. C. Yeo, H. T. Tan, T. A. Evans, J. D. Mumford, R. P. Keller, R. H. A. Baker, R. T. Corlett & L. R. Carrasco, 2013. Economic and environmental impacts of harmful non-indigenous species in Southeast Asia. PLoS One 8: e71255.

    CAS  PubMed Central  Google Scholar 

  • Paiva, F. F., W. I. A. Gomes, C. R. Medeiros, É. L. F. Álvaro, I. M. S. Ribeiro & J. Molozzi, 2018. Environmental factors influencing the occurrence of alien mollusks in semi-arid reservoirs. Limnetica 37: 187–198.

    Google Scholar 

  • Péres, G. P., 1988. Guía para el studio de los macroinvertebrados acuáticos del departamento de Antioquia. Editorial Presencia Bogotá.

  • Peso, J. G., D. C. Pérez & R. E. Vogler, 2011. The invasive snail Melanoides tuberculata in Argentina and Paraguay. Limnologica 41: 281–284.

    Google Scholar 

  • Peters, D. P., 2004. Selection of models of invasive species dynamics1. Weed Technology 18: 1236–1239.

    Google Scholar 

  • Peterson, A., 1960. Larvae of Insects. An Introduction to Nearctic Species. Columbus: OHIO.

  • Pimentel, D., 2002. Biological Invasions Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, CRC Press, Boca Raton:

    Google Scholar 

  • Pinto, H. A. & A. L. D. Melo, 2010. Melanoides tuberculata (Mollusca: Thiaridae) as an intermediate host of Centrocestus formosanus (Trematoda: Heterophyidae) in Brazil. Revista Do Instituto De Medicina Tropical De São Paulo 52: 207–210.

    PubMed  Google Scholar 

  • Pinto, H. A. & A. L. Melo, 2012. Melanoides tuberculata (Mollusca: Thiaridae) harboring renicolid cercariae (Trematoda: Renicolidae) in Brazil. Journal of Parasitology 98: 784–787.

    CAS  PubMed  Google Scholar 

  • Pyšek, P. & D. M. Richardson, 2010. Invasive species, environmental change and management, and health. Annual Review of Environment and Resources 35: 25–55.

    Google Scholar 

  • Pyšek, P., A. M. Manceur, C. Alba, K. F. McGregor, J. Pergl, K. Štajerová, M. Chytrý, J. Danihelka, J. Kartesz, J. Klimešová, M. Lucanová, L. Maravcová, M. Nishino, J. Sádlo, J. Suda, L. Tichý & I. Kühn, 2015. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96: 762–774.

    PubMed  Google Scholar 

  • R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rader, R. B., M. C. Belk & M. J. Keleher, 2003. The introduction of an invasive snail (Melanoides tuberculata) to spring ecosystems of the Bonneville Basin, Utah. Journal of Freshwater Ecology 18: 647–657.

    Google Scholar 

  • Raw, J. L., R. Perissinotto, N. A. F. Miranda & N. Peer, 2016a. Feeding dynamics of Melanoides tuberculata (Müller, 1774). Journal of Molluscan Studies 82: 328–335.

    Google Scholar 

  • Raw, J. L., R. Perissinotto, N. A. F. Miranda & N. Peer, 2016b. Diet of Melanoides tuberculata (Müller, 1774) from subtropical coastal lakes: evidence from stable isotope (δ13C and δ15N) analyses. Limnologica 59: 116–123.

    Google Scholar 

  • Ridgeway, G., 2012. Generalized boosted models: A guide to the gbm package. Available at from ‘gbm’ documentation in R.

  • Santos, C. M. & E. M. Eskinazi-Sant’Anna, 2010. The introduced snail Melanoides tuberculatus (Muller, 1774) (Mollusca: Thiaridae) in aquatic ecosystems of the Brazilian Semiarid Northeast (Piranhas-Assu River basin, State of Rio Grande do Norte). Brazilian Journal of Biology 70: 1–7.

    CAS  Google Scholar 

  • Santos, R. C. L., C. T. Callil & V. L. U. Landeiro, 2020. Unraveling the effects of water–sediment conditions and spatial patterns on Unionida assemblages in seasonally connected floodplain lakes. Hydrobiologia 847: 2909–2922.

    CAS  Google Scholar 

  • Schindler, S., B. Staska, M. Adam, W. Rabitsch & F. Essl, 2015. Alien species and public health impacts in Europe: a literature review. NeoBiota 27: 1–23.

    Google Scholar 

  • Schlaepfer, M. A., D. F. Sax & J. D. Olden, 2011. The potential conservation value of non-native species. Conservation Biology 25: 428–437.

    PubMed  Google Scholar 

  • SEMARH, Secretaria do Meio Ambiente e dos Recursos Hídricos, Estado do Rio Grande do Norte – Brasil. http://www.semarh.rn.gov.br/. Consulted 16 Mar 2015.

  • Shea, K. & P. Chesson, 2002. Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution 17: 170–176.

    Google Scholar 

  • Silva, R. E., A. L. Melo, L. H. Pereira & L. F. Frederico, 1994. Levantamento malacológico da bacia hidrográfica do lago Soledade, Ouro Branco (Minas Gerais, Brasil). Revista Do Instituto De Medicina Tropical De São Paulo 36: 437–444.

    PubMed  Google Scholar 

  • Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics 40: 81–102.

  • Simberloff, D., 2011. How common are invasion-induced ecosystem impacts? Biological Invasions 13: 1255–1268.

    Google Scholar 

  • Souza, A. E., J. F. Oliveira, D. Peretti, R. Fernandes, R. S. Costa & J. L. C. Novaes, 2017. Effects of a supraseasonal drought on the ecological attributes of Plagioscion squamosissimus (Heckel, 1840) (Pisces, Sciaenidae) in a Brazilian Reservoir. The Scientific World Journal 2017: 5930516.

    PubMed  PubMed Central  Google Scholar 

  • Sroczyńska, K., T. J. Williamson, M. Claro, J. A. González-Pérez, P. Range, T. Boski & L. Chícharo, 2020. Food web structure of three Mediterranean stream reaches along a gradient of anthropogenic impact. Hydrobiologia 847: 2357–2375.

    Google Scholar 

  • Strachan, S. A. & T. B. Reynoldson, 2014. Performance of the standard CABIN method: comparison of BEAST models and error rates to detect simulated degradation from multiple data sets. Freshwater Science 33: 1225–1237.

    Google Scholar 

  • Strayer, D. L. & H. M. Malcom, 2006. Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshwater Biology 51: 117–130.

    Google Scholar 

  • Sutherland, D. L., M. H. Turnbull & R. J. Craggs, 2014. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Research 53: 271–281.

    CAS  PubMed  Google Scholar 

  • Suzuki, M. & H. Nagasawa, 2013. Mollusk shell structures and their formation mechanism. Canadian Journal of Zoology 91: 349–366.

    CAS  Google Scholar 

  • Tilman, D., 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences 101: 10854–10861.

    CAS  Google Scholar 

  • Trinidad-Ocaña, C., J. F. Miranda-Vidal, J. Juárez-Flores & E. Barba-Macías, 2017. Distribución y densidad de moluscos invasores de la familia Thiaridae en diferentes ambientes dulceacuícolas de Tabasco, México. Hidrobiológica 27: 59–68.

    Google Scholar 

  • Trivinho-Strixino, S., 2011. Larvas de Chironomidae: guia de identificação. UFSCar, São Carlos

  • Vasconcelos, M. C., M. M. Espírito-Santo & F. A. R. Barboza, 2009. Depth effects on the abundance, survivorship rate and size of Melanoides tuberculatus (Prosobranchia: Thiaridae) in Dom Helvécio Lake, Minas Gerais, Brazil. Acta Limnologica Brasiliensia 21: 393–397.

    Google Scholar 

  • Vasconcelos, J. F., J. E. D. L. Barbosa, E. D. L. Azevêdo, D. J. D. S. Azevêdo & M. J. P. Anacleto, 2013. Predation effects of Melanoides tuberculatus Müller 1774) on periphytic biofilm colonization: an experimental approach. Biota Neotropica 13: 96–101.

    Google Scholar 

  • Vaz, J. F., H. M. S. Teles & M. A. Correa, 1986. Ocorrência no Brasil de Thiara (Melanoides) tuberculata (OF Muller, 1774) (Gastropoda, Prosobranchia), primeiro hospedeiro intermediário de Clonorchis sinensis (Cobbold, 1875) (Trematoda, Plathyhelmintes). Revista De Saúde Pública 20: 318–322.

    CAS  PubMed  Google Scholar 

  • Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.

    Google Scholar 

  • Wetzel, R. G., 2001. Fundamental processes within natural and constructed wetland ecosystems: short-term versus long-term objectives. Water Science and Technology 44: 1–8.

    CAS  PubMed  Google Scholar 

  • Williams, G. J., G. S. Aeby, R. O. Cowie & S. K. Davy, 2010. Predictive modeling of coral disease distribution within a reef system. PLoS One 5: e9264.

    PubMed  PubMed Central  Google Scholar 

  • Williams, N., D. A. Suárez, R. Juncos, M. Donato, S. R. Guevara & A. Rizzo, 2020. Spatiotemporal structuring factors in the Chironomidae larvae (Insecta: Diptera) assemblages of an ultraoligotrophic lake from northern Patagonia Andean range: implications for paleolimnological interpretations. Hydrobiologia 847: 267–291.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES for the postdoctoral scholarship granted to the first author (process 88887.374939/2019-00); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for funding the research project CNPq/MCTI 446721/2014-0 and the research productivity scholarship (process 302393/2017-0) granted to JM and to SMT (process 303692/2014-6); Laboratory of Limonology, Ecotoxicology and Aquatic Ecology (UFMG) for logistical support; Laboratory of Ecology of Benthos (UEPB) and Laboratory of Aquatic Ecology for their support in sample processing; and Foundation for the Science and Technology for the financial support to MARE strategic program (UID/MAR/04292/2013).

Funding

Funding for the execution of this research was provided by the National Council for Scientific and Technological Development (CNPq) through the Research Project CNPq/MCTI 446721/2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Jovem-Azevêdo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling editor: Manuel Lopes-Lima

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovem-Azevêdo, D., Bezerra-Neto, J.F., Feio, M.J. et al. Modelling the abundance of a non-native mollusk in tropical semi-arid reservoirs. Hydrobiologia 849, 625–639 (2022). https://doi.org/10.1007/s10750-021-04729-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04729-0

Keywords

Navigation