Skip to main content

Advertisement

Log in

Early spring food resources and the trophic structure of macroinvertebrates in a small headwater stream as revealed by bulk and fatty acid stable isotope analysis

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Energy and organic matter flow in forested headwater stream trophic webs is generally more dependent on allochthonous than autochthonous organic matter. However, we propose that autochthonous organic matter significantly contributes to the development of primary consumers during periods when the riparian canopy is open. We determined bulk stable isotope signatures, fatty acid (FA) composition and carbon stable isotope ratios of individual FA (δ13CFA) of basal organic sources and nine major macroinvertebrate taxa sampled in a first-order forest stream (Massif Central, France) in early spring before the onset of vegetation growth. Our results from a Bayesian mixing model showed that most of the energy channeled to invertebrate consumers came from biofilm, bryophytes and fine benthic detrital particles (FBOM), and little from beech leaf litter. Estimates from a model using proportions of assimilated sources and δ13CFA signatures showed that the most common FAs (i.e. 16:0, 18:3ω3) were derived from organic sources proportionally relative to their assimilation by macroinvertebrates. In addition, it was clear that long-chain PUFAs (ARA and EPA) were obtained only from autochthonous sources through flexible feeding strategies. Our study highlights the dependence of stream macroinvertebrates on autochthonous primary production (including bryophytes) for their long-chain PUFA requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abelho, M., 2001. From litterfall to breakdown in streams: a Review. The Scientific World 1: 656–680.

    Article  CAS  Google Scholar 

  • Aguilar, V., I. S. Racotta, E. Goytortúa, M. Wille, P. Sorgeloos, R. Civera & E. Palacios, 2012. The influence of dietary arachidonic acid on the immune response and performance of Pacific whiteleg shrimp, Litopenaeus vannamei, at high stocking density. Aquaculture Nutrition 18: 258–271.

    Article  CAS  Google Scholar 

  • Ahlgren, G., T. Vrede & W. Goedkoop, 2009. Fatty acid ratios in freshwater fish, zooplankton and zoobenthos–are there specific optima? In Lipids in aquatic ecosystems. Springer, pp. 147–178.

  • Allan, J. D. & M. M. Castillo, 2007. Stream ecology: structure and function of running waters, Springer Science & Business Media Netherlands.

    Book  Google Scholar 

  • Anderson, C. & G. Cabana, 2007. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. Journal of the North American Benthological Society 26: 273–285.

    Article  CAS  Google Scholar 

  • Bec, A., M. Perga, A. Koussoroplis, G. Bardoux, C. Desvilettes, G. Bourdier & A. Mariotti, 2011. Assessing the reliability of fatty acid–specific stable isotope analysis for trophic studies. Methods in Ecology and Evolution 2: 651–659.

    Article  Google Scholar 

  • Berthélemy, C. & M. Lahoud, 1981. Régimes alimentaires et pièces buccales de quelques Perlodidae et Perlidae des Pyrénées (Plecoptera). Annales de Limnologie 3: 1–24.

    Article  Google Scholar 

  • Bottová, K., T. Derka, P. Beracko & J. M. T. de Figueroa, 2013. Life cycle, feeding and secondary production of Plecoptera community in a constant temperature stream in Central Europe. Limnologica 43: 27–33.

    Article  Google Scholar 

  • Bourrelly, P., 1988. Les algues d'eau douce: initiation à la systématique. Tomes I., II., III. Eds N. Boubée & Cie, Paris.

  • Céréghino, R., 2002. Shift from a herbivorous to a carnivorous diet during the larval development of some Rhyacophila Species (Trichoptera). Aquatic Insects 24: 129–135.

    Article  Google Scholar 

  • Céréghino, R., 2006. Ontogenetic diet shifts and their incidence on ecological processes: a case study using two morphologically similar stoneflies (Plecoptera). Acta Oecologica 30: 33–38.

    Article  Google Scholar 

  • Collins, S. M., T. J.Kohler, S. A. Thomas, W. W. Fetzer & A. S. Flecker, 2016. The importance of terrestrial subsidies in stream food webs varies along a stream size gradient. Oikos 125: 674–685.

    Article  Google Scholar 

  • Coudreuse, J., J. Haury, J. Bardat & J. P. Rebillard, 2005. Les bryophytes aquatiques et supra-aquatiques. Clé d'identification pour la mise en oeuvre de l'Indice Biologique Macrophytique en Rivière. Eds AEAG. SL., p 132. https://www.semanticscholar.org/paper/Les-bryophytes-aquatiques-et-supra-aquatiques.-Clé-Coudreuse-Haury

  • Crenier, C., J. Arce-Funck, A. Bec, E. Billoir, F. Perrière, J. Leflaive, F. Guérold, V. Felten & M. Danger, 2017. Minor food sources can play a major role in secondary production in detritus-based ecosystems. Freshwater Biology 62: 1155–1167.

    Article  CAS  Google Scholar 

  • Crenier, C., K. Sanchez-Thirion, A. Bec, V. Felten, J. Ferriol, A. G. González, J. Leflaive, F. Perrière, L. Ten-Hage & M. Danger, 2019. Interactive impacts of silver and phosphorus on autotrophic biofilm elemental and biochemical quality for a macroinvertebrate consumer. Frontiers in Microbiology 10: 732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross, W. F., J. B. Wallace, A. D. Rosemond & S. L. Eggert, 2006. Whole‐system nutrient enrichment increases secondary production in a detritus‐based ecosystem. Ecology 87: 1556–1565.

    Article  CAS  PubMed  Google Scholar 

  • Dangles, O., 2002. Functional plasticity of benthic macroinvertebrates: implications for trophic dynamics in acid streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 1563–1573.

    Article  Google Scholar 

  • Dangles, O. & E. Chauvet, 2003. Effects of stream acidification on fungal biomass in decaying beech leaves and leaf palatability. Water Research 37: 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Décamps, H., 1968. Vicariances écologiques chez les trichoptères des Pyrénées. Annales de Limnologie 4 : 1–50.

    Article  Google Scholar 

  • Descroix, A., A. Bec, G. Bourdier, D. Sargos, J. Sauvanet, B. Misson & C. Desvilettes, 2010. Fatty acids as biomarkers to indicate main carbon sources of four major invertebrate families in a large River (the Allier, France). Fundamental and Applied Limnology 177: 39–55.

    Article  CAS  Google Scholar 

  • Desvilettes, C., G. Bourdier, C. Amblard & B. Barth, 1997. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biology 38: 629–637

    Article  CAS  Google Scholar 

  • Di Cugno, N. & C. T. Robinson, 2017. Trophic structure of macroinvertebrates in alpine non-glacial streams. Fundamental and Applied Limnology 190: 319–330.

    Article  Google Scholar 

  • Dodds, W. K. & V. H. Smith, 2016. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6: 155–164.

    Article  CAS  Google Scholar 

  • Dodds, W. K., S. M. Collins, S. K. Hamilton, J. L. Tank, S. Johnson, J. R. Webster, H. M. Rantala & W. H. McDowell, 2014. You are not always what we think you eat: selective assimilation across multiple whole‐stream isotopic tracer studies. Ecology 95: 2757–2767.

    Article  Google Scholar 

  • Evans-White, M. A. & H. M. Halvorson, 2017. Comparing the ecological stoichiometry in green and brown food webs–a review and meta-analysis of freshwater food webs. Frontiers in Microbiology 8: 1184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feeley, H. B. & M. Kelly-Quinn, 2015. The nymphal diet of the stonefly Protonemura meyeri (Pictet) (Plecoptera: Nemouridae) in four episodically acidic headwater streams in Ireland. Irish Naturalists' Journal 104–109.

  • Felten, V., G. Tixier, F. Guérold, V. De Crespin De Billy & O. Dangles, 2008. Quantification of diet variability in a stream amphipod: Implications for ecosystem functioning. Fundamental and Applied Limnology 170: 303–313.

    Article  Google Scholar 

  • Fink, P. & E. Von Elert, 2006. Physiological responses to stoichiometric constraints: nutrient limitation and compensatory feeding in a freshwater snail. Oikos 115: 484–494.

    Article  CAS  Google Scholar 

  • Franklin, H. M., A. R. Carroll, C. Chen, P. Maxwell & M. A. Burford, 2020. Plant source and soil interact to determine characteristics of dissolved organic matter leached into waterways from riparian leaf litter. Science of the Total Environment 703: 134530.

  • Friberg, N. & D. Jacobsen, 1994. Feeding plasticity of two detritivore-shredders. Freshwater Biology 32: 133–142.

    Article  Google Scholar 

  • Frontier, S., 1976. Utilisation des diagrammes rang-fréquence dans l’analyse des écosystèmes. Journal de Recherches Océanographiques. I(3):35-48.

    Google Scholar 

  • Gaillard, B., T. Meziane, R. Tremblay, P. Archambault, M. E. Blicher, L. Chauvaud, S. Rysgaard & F. Olivier, 2017. Food resources of the bivalve Astarte elliptica in a sub-Arctic fjord: a multi-biomarker approach. Marine Ecology Progress Series 567: 139–156.

    Article  CAS  Google Scholar 

  • Gee, J. H. R., 1988. Population dynamics & morphometries of Gammarus pulex L.: evidence of seasonal food limitation in a freshwater detritivore. Freshwater Biology 19: 333–343.

    Article  Google Scholar 

  • Gergs, R., N. Steinberger, B. Beck, T. Basen, E. Yohannes, R. Schulz & D. Martin‐Creuzburg, 2015. Compound‐specific δ13C analyses reveal sterol metabolic constraints in an aquatic invertebrate. Rapid Communications in Mass Spectrometry 29: 1789–1794.

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev, M. I., N. N. Sushchik, G. S. Kalachova & O. N. Makhutova, 2012. Stable isotope composition of fatty acids in organisms of different trophic levels in the Yenisei River. PLoS One 7: e34059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladyshev, M. I., N. N. Sushchik, O. N. Makhutova & G. S. Kalachova, 2014. Trophic fractionation of isotope composition of fatty acids in the trophic chain of a river ecosystem. In Doklady, Biochemistry and Biophysics, Springer, p. 4.

  • Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding processes and downstream linkages of headwater systems: headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land. Bioscience 52: 905–916.

    Article  Google Scholar 

  • Graça, M. A. S., C. Cressa, T. M. O. Gessner, M. J. Feio & K. A. Callies, 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46: 947–957.

    Article  Google Scholar 

  • Grayston, S. J., C. D. Campbell, R. D. Bardgett, J. L. Mawdsley, C. D. Clegg, K. Ritz, B. S. Griffiths, J. S. Rodwell & S. J. Edward, 2004. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology 25: 63–84.

    Article  Google Scholar 

  • Guenet, B., M. Danger, L. Abbadie & G. Lacroix, 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91: 2850–2861.

    Article  PubMed  Google Scholar 

  • Guo, F., M. J. Kainz, D. Valdez, F. Sheldon & S. E. Bunn, 2016. High-quality algae attached to leaf litter boost invertebrate shredder growth. Freshwater Science 35: 1213–1221.

    Article  Google Scholar 

  • Guo, F., S. E. Bunn, M. T. Brett & M. J. Kainz, 2017. Polyunsaturated fatty acids in stream food webs–high dissimilarity among producers and consumers. Freshwater Biology 62: 1325–1334.

    Article  CAS  Google Scholar 

  • Guo, F., S. E. Bunn, M. T. Brett, B. Fry, H. Hager, X. Ouyang & M. J. Kainz, 2018. Feeding strategies for the acquisition of high‐quality food sources in stream macroinvertebrates: Collecting, integrating, and mixed feeding. Limnology and Oceanography 63: 1964–1978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haines, W. P. & J. A. A. Renwick, 2009. Bryophytes as food: comparative consumption and utilization of mosses by a generalist insect herbivore. Entomologia Experimentalis et Applicata 133: 296–306.

    Article  Google Scholar 

  • Halvorson, H. M., S. N. Francoeur, R. H. Findlay & K. A. Kuehn, 2019. Algal-mediated priming effects on the ecological stoichiometry of leaf litter decomposition: a meta-analysis. Frontiers in Earth Science 7: 76.

    Article  Google Scholar 

  • Hayes, J. M., 2001. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Reviews in Mineralogy & Geochemistry 43: 225–277.

    Article  CAS  Google Scholar 

  • Hill, W. R., P. J. Mulholland & E. R. Marzolf, 2001. Stream ecosystem responses to forest leaf emergence in spring. Ecology 82: 2306–2319.

    Article  Google Scholar 

  • Hill, W. R., J. G. Smith & A. J. Stewart, 2010. Light, nutrients, and herbivore growth in oligotrophic streams. Ecology 91: 518–527.

    Article  PubMed  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424.

    Article  Google Scholar 

  • Hoppeler, F., C. Winkelmann, J. Becker & S. U. Pauls, 2018. Larval growth and metabolic energy storage of Micropterna lateralis (Trichoptera: Limnephilidae) in an intermittent stream: glycogen dominates in final instars. Hydrobiologia 806: 175–185.

    Article  CAS  Google Scholar 

  • Jardine, T. D., W. L. Hadwen, S. K. Hamilton, S. Hladyz, S. M. Mitrovic, K. A. Kidd, W. Y. Tsoi, M. Spears & D. P. Westhorpe, 2014. Understanding and overcoming baseline isotopic variability in running waters. River Research and Applications, 30: 155–165.

    Article  Google Scholar 

  • Kalachova, G., M. Gladyshev, N. Sushchik & O. Makhutova, 2011. Water moss as a food item of the zoobenthos in the Yenisei River. Open Life Sciences 6: 236–245.

    Article  Google Scholar 

  • Koussoroplis, A.-M., A. Bec, M.-E. Perga, E. Koutrakis, C. Desvilettes & G. Bourdier, 2010. Nutritional importance of minor dietary sources for leaping grey mullet Liza saliens (Mugilidae) during settlement: insights from fatty acid δ13C analysis. Marine Ecology Progress Series 404: 207–217.

    Article  CAS  Google Scholar 

  • Kozáčeková, Z., J. M. T. de Figueroa, M. J. López‐Rodríguez, P. Beracko & T. Derka, 2009. Life history of a population of Protonemura intricata (Ris, 1902) (Insecta, Plecoptera) in a constant temperature stream in Central Europe. International Review of Hydrobiology 94: 57–66.

    Article  Google Scholar 

  • Kühmayer, T., F. Guo, N. Ebm, T. J. Battin, M. T. Brett, S. E. Bunn, B. Fry & M. J. Kainz, 2020. Preferential retention of algal carbon in benthic invertebrates: Stable isotope and fatty acid evidence from an outdoor flume experiment. Freshwater Biology 2020;00:1–10.

    Google Scholar 

  • Lake, J. L., J. R. Serbst, A. Kuhn, N. J. Smucker, P. Edwards, A. Libby, M. Charpentier & K. Miller, 2019. Use of stable isotopes in benthic organic material as a baseline for estimating fish trophic positions in lakes. Canadian Journal of Fisheries and Aquatic Sciences 76: 1227–1237.

    Article  CAS  PubMed  Google Scholar 

  • Lamberti, G. A. & A. D. Steinman, 1997. A comparison of primary production in stream ecosystems. Journal of the North American Benthological Society 16: 95–104.

    Article  Google Scholar 

  • Lavandier, P., 1982. Développement larvaire—régime alimentaire, production d’Isoperla viridinervis pictet (plecoptera, perlodidae) dans un torrent froid de haute montagne. Annales de Limnologie- 2: 301–318.

    Article  Google Scholar 

  • Little, C. J. & F. Altermatt, 2019. Differential resource consumption in leaf litter mixtures by native and non-native amphipods. Aquatic Ecology 53: 151–162.

    Article  CAS  Google Scholar 

  • Lu, Y., F. F.Eiriksson, M. Thorsteinsdóttir & H. T. Simonsen, 2019. Valuable fatty acids in bryophytes—Production, biosynthesis, analysis and applications. Plants 8: 524.

    Article  CAS  PubMed Central  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Majdi, N. & W. Traunspurger, 2017. Leaf fall affects the isotopic niches of meiofauna and macrofauna in a stream food web. Food Webs 10: 5–14.

    Article  Google Scholar 

  • McCutchan Jr, J. H., W. M. Lewis Jr, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • McWilliam-Hughes, S. M., T. D. Jardine & R. A. Cunjak, 2009. Instream C sources for primary consumers in two temperate, oligotrophic rivers: possible evidence of bryophytes as a food source. Journal of the North American Benthological Society 28: 733–743.

    Article  Google Scholar 

  • Mihuc, T. B., 1997. The functional trophic role of lotic primary consumers: generalist versus specialist strategies. Freshwater Biology 37: 455–462.

    Article  Google Scholar 

  • Mondy, C. P., B. Villeneuve, V. Archaimbault & P. Usseglio-Polatera, 2012. A new macroinvertebrate-based multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: A taxonomical and trait approach. Ecological Indicators 18: 452–467.

    Article  Google Scholar 

  • Mongrand, S., J.-J. Bessoule, F. Cabantous & C. Cassagne, 1998. The C16:3\C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49: 1049–1064.

    Article  CAS  Google Scholar 

  • Mueller, K. E., P. J. Polissar, J. Oleksyn & K. H. Freeman, 2012. Differentiating temperate tree species and their organs using lipid biomarkers in leaves, roots and soil. Organic Geochemistry 52: 130–141.

    Article  CAS  Google Scholar 

  • Mulholland, P. J., J. L. Tank, D. M. Sanzone, W. M. Wollheim, B. J. Peterson, J. R. Webster & J. L. Meyer, 2000. Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15 N tracer addition. Journal of the North American Benthological Society 19: 145–157.

    Article  Google Scholar 

  • Niedrist, G. H. & L. Füreder, 2017. Trophic ecology of alpine stream invertebrates: current status and future research needs. Freshwater Science 36: 466–478.

    Article  Google Scholar 

  • Parker, J. D., D. E. Burkepile, D. O. Collins, J. Kubanek & M. E. Hay, 2007. Stream mosses as chemically‐defended refugia for freshwater macroinvertebrates. Oikos 116: 302–312.

    Article  CAS  Google Scholar 

  • Parnell, A. & R. Inger, 2016. Simmr: a stable isotope mixing model. R Packag version 03 R.

  • Parnell, A., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: Coping with too much variation. PLoS One 5: 1–5.

    Article  Google Scholar 

  • Phillips, D. L. & P. L. Koch, 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130: 114–125.

    Article  PubMed  Google Scholar 

  • Phillips, D. L., R. Inger, S. Bearhop, A. L. Jackson, J. W. Moore, A. Parnell, B. X. Semmens & E. J. Ward, 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92: 823–835.

    Article  Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rasmussen, J. B., 2010. Estimating terrestrial contribution to stream invertebrates and periphyton using a gradient‐based mixing model for δ13C. J Anim Ecol 79: 393–402.

    Article  PubMed  Google Scholar 

  • Richardson, J. S., 2019. Biological diversity in headwater streams. Water 11 (366): 2-19.

    Google Scholar 

  • Richardson, J. S. & E. Chauvet, 2019. Consumer responses to resource patch size and architecture: leaf packs in streams. Fundamental and Applied Limnology 192: 255–261.

    Article  Google Scholar 

  • Roche, K. R., A. F. Aubeneau, M. Xie, T. Aquino, D. Bolster & A. I. Packman, 2016. An integrated experimental and modeling approach to predict sediment mixing from benthic burrowing behavior. Environmental Science and Technology 50: 10047–10054.

    Article  CAS  PubMed  Google Scholar 

  • Rosi-Marshall, E. & J. B. Wallace, 2002. Invertebrate food webs along a stream resource gradient. Freshwater Biology 47: 129-141.

    Article  Google Scholar 

  • Ruess, L. & D. Müller-Navarra, 2019. Essential biomolecules in food webs. Frontiers in Ecology and Evolution 7: 269.

    Article  Google Scholar 

  • Sanpera‐Calbet, I., A. Lecerf & E. Chauvet, 2009. Leaf diversity influences in‐stream litter decomposition through effects on shredders. Freshwater Biology 54: 1671–1682.

    Article  Google Scholar 

  • Sun, J. & D. Liu, 2003. Geometricmodels for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25, 1331–1346.

    Article  Google Scholar 

  • Taipale, S., U. Strandberg, E. Peltomaa, A. W. E. Galloway, A. Ojala & M. T. Brett, 2013. Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquatic Microbial Ecology 71: 165–178.

    Article  Google Scholar 

  • Tanaka, T., T. F. Thingstad, U. Christaki, J. Colombet, V. Cornet-Barthaux, C. Courties, J. D. Grattepanche, A. Lagaria, J. Nedoma, L. Oriol, S. Psarra, M. Pujo-Pay & F. Van Wambeke, 2011. Lack of P-limitation of phytoplankton and heterotrophic prokaryotes in surface waters of three anticyclonic eddies in the stratified Mediterranean Sea. Biogeosciences 8: 525–538.

    Article  CAS  Google Scholar 

  • Toman, M. J. & P. C. Dall, 1997. The diet of Erpobdella octoculata (Hirudinea: Erpobdellidae) in two Danish lowland streams. Archiv für Hydrobiologie 549–563.

  • Torres-Ruiz, M. & J. D. Wehr, 2010. Changes in the nutritional quality of decaying leaf litter in a stream based on fatty acid content. Hydrobiologia 651: 265–278.

    Article  CAS  Google Scholar 

  • Torres-Ruiz, M. & J. D. Wehr, 2019. Complementary information from fatty acid and nutrient stoichiometry data improve stream food web analyses. Hydrobiologia 847: 629–645.

    Article  CAS  Google Scholar 

  • Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. Journal of the North American Benthological Society 26: 509–522.

    Article  Google Scholar 

  • Treignier, C., I. Tolosa, R. Grover, S. Reynaud & C. F.-P. Sa, 2009. Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: Effect of light and feeding. Limnology and Oceanography 54: 1933–1940.

    Article  CAS  Google Scholar 

  • Twining, C. W., D. C. Josephson, C. E. Kraft, J. T. Brenna, P. Lawrence & A. S. Flecker, 2017. Limited seasonal variation in food quality and foodweb structure in an Adirondack stream: Insights from fatty acids. Freshwater Science 36: 877–892.

    Article  Google Scholar 

  • Twining, C. W., S. J. Taipale, L. Ruess, A. Bec, D. Martin-Creuzburg & M. J. Kainz, 2020. Stable isotopes of fatty acids: current and future perspectives for advancing trophic ecology. PPhilosophical Transactions of the Royal Society B 375: 20190641.

    Article  CAS  Google Scholar 

  • Verneaux, J., 1977. Sondages quantitatifs de la faune benthique des eaux vives des environs de Besse-en-Chandesse (Puy-De-Dômes). Données écologiques, Annales de la Station Biologique de Besse-en-Chandesse. I: 3–37.

    Google Scholar 

  • Wallace, J. B. & S. L. Eggert, 2009. Benthic invertebrate fauna, small streams. Encyclopedia of Inland Waters 2 173-190

    Article  Google Scholar 

  • Wang, S. W., S. M. Budge, K. Iken, R. R. Gradinger, A. M. Springer & M. J. Wooller, 2015. Importance of sympagic production to Bering Sea zooplankton as revealed from fatty acid-carbon stable isotope analyses. Marine Ecology Progress Series 518: 31–50.

    Article  CAS  Google Scholar 

  • Winkelmann, C. & J. H. E. Koop, 2007. The management of metabolic energy storage during the life cycle of mayflies: a comparative field investigation of the collector-gatherer Ephemera danica and the scraper Rhithrogena semicolorata. Journal of Comparative Physiology B 177: 119–128.

    Article  Google Scholar 

  • Wögerbauer, C. M. & M. Kelly-Quinn, 2013. Seasonal variation in diet and feeding strategy of three mayfly species. Biology and Environment: Proceedings of the Royal Irish Academy, JSTOR, pp. 211–226.

  • Ylla, I., A. M. Romaní & S. Sabater, 2007. Differential effects of nutrients and light on the primary production of stream algae and mosses. Fundamental and Applied Limnology 170: 1–10.

    Article  CAS  Google Scholar 

  • Zah, R., P. Burgherr, S. M. Bernasconi & U. Uehlinger, 2001. Stable isotope analysis of macroinvertebrates and their food sources in a glacier stream. Freshwater Biology 46: 871–882.

    Article  CAS  Google Scholar 

  • Zenteno, L., L. Cárdenas, N. Valdivia, I. Gómez, J. Höfer, I. Garrido & L. M. Pardo, 2019. Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community. Progress in Oceanography 174: 55–63.

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their help in improving the article. We also thank Mrs F. Van Wyk de Vries for proofreading the English text.

Funding

The project was funded by EC2CO (INSU-CNRS) IFODPSYLO 2018-2020.

Author information

Authors and Affiliations

Authors

Contributions

TL-V: Project conceptualization, experimental management, data acquisition and analysis, article writing. A-MK and AB: article writing. CD: corresponding author and project manager, project conceptualization, data analysis, article writing.

Corresponding author

Correspondence to Christian Desvilettes.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2338 kb)

Supplementary file2 (XLSX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labed-Veydert, T., Koussoroplis, AM., Bec, A. et al. Early spring food resources and the trophic structure of macroinvertebrates in a small headwater stream as revealed by bulk and fatty acid stable isotope analysis. Hydrobiologia 848, 5147–5167 (2021). https://doi.org/10.1007/s10750-021-04699-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04699-3

Keywords

Navigation