Skip to main content

Advertisement

Log in

Allelopathic interaction among rocky intertidal invertebrates: sponge Cinachyrella cf. cavernosa and Zooxanthellate zoanthids Zoanthus sansibaricus

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Intertidal sessile invertebrates experience tough competition for space which they avoid by releasing secondary metabolites (allelochemicals). We investigated the allelopathic interaction between sponge Cinachyrella cf. cavernosa and its neighbour zoanthids Zoanthus sansibaricus over a year on the rocky beach of Anjuna, (Goa) India. A major sterol (β-sitosterol) was isolated from the sponge, and its natural variability was checked in tagged sponges with and without their competitor zoanthids during the reproductive and non-reproductive months of the sponges. The sponge showed significant variability in the production of β-sitosterol owing to its spatial competition and asexual reproduction (budding) as predicted by the multiple regression analysis. Zoanthids are known to have dynamic mutualistic association with their autotrophic endosymbionts’ dinoflagellate (Symbiodinium, known as zooxanthellae), which are directly involved in their physiology. The phytagel™-based field assay of sponge’s bioactive compound (β-sitosterol) was conducted to check its allelopathic impact on Z. sansibaricus and its symbiotic zooxanthellae (Symbiodinium sp.). Results showed significant bleaching (50–80%) in the host Z. sansibaricus, resulting from a decrease in symbiotic zooxanthellae count, cell density, chl a and chl c content. This suggests the role of β-sitosterol as allelochemical of the sponge in preventing the overgrowth of aggressive Z. sansibaricus, possibly by affecting its symbionts. This investigation is not only important to understand the ecological roles of marine-derived allelochemicals but also to allow sustainable bioprospecting of marine resources.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdo, D., C. Motti, C. Battershill & E. Harvey, 2007. Temperature and spatiotemporal variability of salicylihalamide A in the sponge Haliclona sp. Journal of Chemical Ecology 33(8):1635–1645.

    Article  CAS  PubMed  Google Scholar 

  • Aronson, R., W. Precht, M. Toscano & K. Koltes, 2002. The 1998 bleaching event and its aftermath on a coral reef in Belize. Marine Biology 141(3):435–447.

    Article  Google Scholar 

  • Ávila, E., J. L. Carballo & J. A. Cruz-Barraza, 2007. Symbiotic relationships between sponges and other organisms from the Sea of Cortes (Mexican Pacific coast): same problems, same solutions. Innovation and Sustainability:147–156.

    Google Scholar 

  • Becerro, M. A., 2008. Quantitative trends in sponge ecology research. Marine Ecology 29(2):167–177.

    Article  Google Scholar 

  • Becerro, M. A., R. W. Thacker, X. Turon, M. J. Uriz & V. J. Paul, 2003. Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia 135(1):91–101.

    Article  PubMed  Google Scholar 

  • Bell, J. J., 2008. The functional roles of marine sponges. Estuarine, Coastal and Shelf Science 79(3):341–353.

    Article  Google Scholar 

  • Brown, B., 1997. Coral bleaching: causes and consequences. Coral Reefs 16(1):S129–S138.

    Article  Google Scholar 

  • Chaves-Fonnegra, A., L. Castellanos, S. Zea, C. Duque, J. Rodríguez & C. Jiménez, 2008. Clionapyrrolidine A—a metabolite from the encrusting and excavating sponge Cliona tenuis that kills coral tissue upon contact. Journal of Chemical Ecology 34(12):1565–1574.

    Article  CAS  PubMed  Google Scholar 

  • De Caralt, S., D. Bry, N. Bontemps, X. Turon, M.-J. Uriz & B. Banaigs, 2013. Sources of secondary metabolite variation in Dysidea avara (porifera: demospongiae): The importance of having good neighbors. Marine Drugs 11(2):489–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Done, T., E. Turak, M. Wakeford, L. DeVantier, A. McDonald & D. Fisk, 2007. Decadal changes in turbid-water coral communities at Pandora Reef: loss of resilience or too soon to tell? Coral Reefs 26(4):789–805.

    Article  Google Scholar 

  • Duckworth, A. R. & C. N. Battershill, 2001. Population dynamics and chemical ecology of New Zealand Demospongiae Latrunculia sp. nov. and Polymastia croceus (Poecilosclerida: Latrunculiidae: Polymastiidae). New Zealand Journal of Marine and Freshwater Research 35(5):935–949.

    Article  Google Scholar 

  • Engel, S. & J. R. Pawlik, 2000. Allelopathic activities of sponge extracts. Marine Ecology Progress Series 207:273–281.

    Article  Google Scholar 

  • Ferretti, C., S. Vacca, C. De Ciucis, B. Marengo, A. R. Duckworth, R. Manconi, R. Pronzato & C. Domenicotti, 2009. Growth dynamics and bioactivity variation of the Mediterranean demosponges Agelas oroides (Agelasida, Agelasidae) and Petrosia ficiformis (Haplosclerida, Petrosiidae). Marine Ecology 30(3):327–336.

    Article  Google Scholar 

  • Fujii, T., S. Keshavmurthy, W. Zhou, E. Hirose, C. Chen & J. Reimer, 2011. Coral-killing cyanobacteriosponge (Terpios hoshinota) on the Great Barrier Reef. Coral Reefs 30(2):483–483.

    Article  Google Scholar 

  • Glynn, P. W., 1996. Coral reef bleaching: facts, hypotheses and implications. Global Change Biology 2(6):495–509.

    Article  Google Scholar 

  • Goad, J. & T. Akihisa, 2012. Analysis of sterols.Blackie Academic & Professional,Chapman & Hall, London, UK.

    Google Scholar 

  • Goreau, T. F., 1964. Mass expulsion of zooxanthellae from Jamaican reef communities after Hurricane Flora. Science 145(3630):383–386.

    Article  CAS  PubMed  Google Scholar 

  • Green, G., P. Gomez & G. Bakus, 1990. Antimicrobial and ichthyotoxic properties of marine sponges from Mexican waters. New perspectives in Sponge Biology Smithsonian Inst, Washington:109–114.

    Google Scholar 

  • Hay, M. E., 1996. Marine chemical ecology: what's known and what's next? Journal of Experimental Marine Biology and Ecology 200(1):103–134.

    Article  CAS  Google Scholar 

  • Henrikson, A. A. & J. R. Pawlik, 1995. A new antifouling assay method: results from field experiments using extracts of four marine organisms. Journal of Experimental Marine Biology and Ecology 194(2):157–165.

    Article  Google Scholar 

  • Hibino, Y., P. Todd, C. D. Ashworth, M. Obuchi & J. D. Reimer, 2013. Monitoring colony colour and zooxanthellae (Symbiodinium spp.) condition in the reef zoanthid Palythoa tuberculosa in Okinawa, Japan. Marine Biology Research 9(8):794–801.

    Article  Google Scholar 

  • ICH Guidelines, I. H. T., 2005. Validation of analytical procedures: text and methodology. Q2 (R1) 1 (20):5.

    Google Scholar 

  • Ivanisevic, J., O. P. Thomas, L. Pedel, N. Pénez, A. V. Ereskovsky, G. Culioli & T. Pérez, 2011. Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi. PloS One 6(11):e28059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffrey, S. t. & G. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz BPP. 167 (2):191–194.

    Article  CAS  Google Scholar 

  • Kuroki, T. & R. Van Woesik, 1999. Changes in zooxanthellae characteristics in the coral Stylophora pistillata during the 1998 bleaching event. Journal of the Japanese Coral Reef Society 1999(1):97–101.

    Article  Google Scholar 

  • Lawson, M. P., I. L. Stoilov, J. E. Thompson & C. Djerassi, 1988. Cell membrane localization of sterols with conventional and unusual side chains in two marine demonsponges. Lipids 23(8):750–754.

    Article  CAS  PubMed  Google Scholar 

  • Leong, W. & J. R. Pawlik, 2010. Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Marine Ecology Progress Series 406:71–78.

    Article  Google Scholar 

  • Lesser, M., 1997. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16(3):187–192.

    Article  Google Scholar 

  • Lewis, T. B. & C. M. Finelli, 2015. Epizoic zoanthids reduce pumping in two Caribbean vase sponges. Coral Reefs 34(1):291–300.

    Article  Google Scholar 

  • Lirman, D., S. Schopmeyer, D. Manzello, L. J. Gramer, W. F. Precht, F. Muller-Karger, K. Banks, B. Barnes, E. Bartels & A. Bourque, 2011. Severe 2010 cold-water event caused unprecedented mortality to corals of the Florida reef tract and reversed previous survivorship patterns. PLoS One 6(8):e23047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Legentil, S., N. Bontemps-Subielos, X. Turon & B. Banaigs, 2006. Temporal variation in the production of four secondary metabolites in a colonial ascidian. Journal of Chemical Ecology 32(9):2079–2084.

    Article  PubMed  CAS  Google Scholar 

  • López-Legentil, S., N. Bontemps-Subielos, X. Turon & B. Banaigs, 2007. Secondary metabolite and inorganic contents in Cystodytes sp.(Ascidiacea): temporal patterns and association with reproduction and growth. Marine Biology 151(1):293–299.

    Article  CAS  Google Scholar 

  • López-Victoria, M., S. Zea & E. Weil, 2006. Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Marine Ecology Progress Series 312:113–121.

    Article  Google Scholar 

  • Martí, R., M. J. Uriz & X. Turon, 2004. Seasonal and spatial variation of species toxicity in Mediterranean seaweed communities: correlation to biotic and abiotic factors. Marine Ecology Progress Series 282:73–85.

    Article  Google Scholar 

  • Mise, T. & M. Hidaka, 2003. Degradation of zooxanthellae in the coral Acropora nasuta during bleaching. Journal of the Japanese Coral Reef Society 2003(5):33–39.

    Article  Google Scholar 

  • Mukherjee, S., 2003. Influence of plant allelochemicals on growth rate, nutritional physiology and mid-gut esterase activity in fifth instar larvae of Spodoptera litura (F.)(Lepidoptera: Noctuidae). Invertebrate Reproduction & Development 43(2):125–132.

    Article  CAS  Google Scholar 

  • Murthy, K. & S. Mishra, 2009. Quantification of β-Sitosterol from Mucuna pruriens by TLC. Chromatographia 69(1-2):183–186.

    Article  CAS  Google Scholar 

  • Napolitano, G., R. Ackman & M. Silva-Serra, 1993. Incorporation of dietary sterols by the sea scallop Placopecten magellanicus (Gmelin) fed on microalgae. Marine Biology 117(4):647–654.

    Article  CAS  Google Scholar 

  • Nes, W. D., R. A. Norton & M. Benson, 1992. Carbon-13 NMR studies on sitosterol biosynthesized from [13 C] mevalonates. Phytochemistry 31(3):805–811.

    Article  CAS  Google Scholar 

  • Nishiguchi, S., N. Wada, H. Yamashiro, H. Ishibashi & I. Takeuchi, 2018. Continuous recordings of the coral bleaching process on Sesoko Island, Okinawa, Japan, over about 50 days using an underwater camera equipped with a lens wiper. Marine Pollution Bulletin 131:422–427.

    Article  CAS  PubMed  Google Scholar 

  • Page, M., L. West, P. Northcote, C. Battershill & M. Kelly, 2005. Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. Journal of Chemical Ecology 31(5):1161–1174.

    Article  CAS  PubMed  Google Scholar 

  • Pawlik, J. R., L. Steindler, T. P. Henkel, S. Beer & M. Ilan, 2007. Chemical warfare on coral reefs: Sponge metabolites differentially affect coral symbiosis in situ. Limnology and Oceanography 52(2):907–911.

    Article  CAS  Google Scholar 

  • Pawlik, J. R., T. P. Henkel, S. E. McMurray, S. López-Legentil, T.-L. Loh & S. Rohde, 2008. Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off. Marine Ecology Progress Series 368:137–143.

    Article  Google Scholar 

  • Pérez, C., D. Vila-Nova & A. Santos, 2005. Associated community with the zoanthid Palythoa caribaeorum (Duchassaing & Michelotti, 1860)(Cnidaria, Anthozoa) from littoral of Pernambuco, Brazil. Hydrobiologia 548(1):207–215.

    Article  Google Scholar 

  • Peterson, B. J., C. M. Chester, F. J. Jochem & J. W. Fourqurean, 2006. Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Marine Ecology-Progress Series- 328:93.

    Article  CAS  Google Scholar 

  • Porter, J. W. & N. M. Targett, 1988. Allelochemical interactions between sponges and corals. The Biological Bulletin 175(2):230–239.

    Article  Google Scholar 

  • Rasher, D. B. & M. E. Hay, 2010. Chemically rich seaweeds poison corals when not controlled by herbivores. Proceedings of the National Academy of Sciences 107(21):9683–9688.

    Article  CAS  Google Scholar 

  • Reigosa, M. & N. Pedrol, 2002. Multifaceted approach to study allelochemicals in an ecosystem. Allelopathy: from Molecules to Ecosystems:271–276.

    Google Scholar 

  • Reimer, A. A., 1971a. Feeding behavior in the Hawaiian zoanthids Palythoa and Zoanthus. Pacific Science 25:512–520.

    Google Scholar 

  • Reimer, A. A., 1971b. Observations on the relationships between several species of tropical zoanthids (Zoanthidea, Coelenterata) and their zooxanthellae. Journal of Experimental Marine Biology and Ecology 7(2):207–214.

    Article  Google Scholar 

  • Reimer, J. D., S. Ono, J. Tsukahara, K. Takishita & T. Maruyama, 2007. Non‐seasonal clade‐specificity and subclade microvariation in symbiotic dinoflagellates (Symbiodinium spp.) in Zoanthus sansibaricus (Anthozoa: Hexacorallia) at Kagoshima Bay, Japan. Phycological Research 55(1):58–65.

    Article  CAS  Google Scholar 

  • Rohde, S., D. J. Gochfeld, S. Ankisetty, B. Avula, P. J. Schupp & M. Slattery, 2012. Spatial variability in secondary metabolites of the indo-pacific sponge Stylissa massa. Journal of Chemical Ecology 38(5):463–475.

    Article  CAS  PubMed  Google Scholar 

  • Russell, B., B. Degnan, M. Garson & G. Skilleter, 2003. Distribution of a nematocyst-bearing sponge in relation to potential coral donors. Coral Reefs 22(1):11–16.

    Article  Google Scholar 

  • Sacristán-Soriano, O., B. Banaigs & M. A. Becerro, 2012. Temporal trends in the secondary metabolite production of the sponge Aplysina aerophoba. Marine Drugs 10(4):677–693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadikun, A., I. Aminah, N. Ismail & P. Ibrahim, 1996. Sterols and sterol glycosides from the leaves of Gynura procumbens. Natural Product Sciences 2(1):19–23.

    CAS  Google Scholar 

  • Saeidnia, S., A. Manayi, A. R. Gohari & M. Abdollahi, 2014. The story of beta-sitosterol-a review. European Journal of Medicinal Plants 4(5):590.

    Article  CAS  Google Scholar 

  • Siebeck, U., N. Marshall, A. Klüter & O. Hoegh-Guldberg, 2006. Monitoring coral bleaching using a colour reference card. Coral Reefs 25(3):453–460.

    Article  Google Scholar 

  • Siebeck, U., D. Logan & N. Marshall, CoralWatch: a flexible coral bleaching monitoring tool for you and your group. In: Proceedings of the 11th International Coral Reef Symposium,2008. vol 1. p 549–553.

  • Singh, A. & N. L. Thakur, 2015b. Influence of spatial competitor on the growth and regeneration of the marine sponge Cinachyrella cf. cavernosa (Porifera, Demospongiae). Hydrobiologia 1–13.

  • Singh, A. & N. L. Thakur, 2015a. Field and laboratory investigations of budding in the tetillid sponge Cinachyrella cavernosa. Invertebrate Biology 134(1):19–30.

    Article  Google Scholar 

  • Singh, A. & N. L. Thakur, 2016. Significance of investigating allelopathic interactions of marine organisms in the discovery and development of cytotoxic compounds. Chemico-Biological Interactions 243:135–147.

    Article  CAS  PubMed  Google Scholar 

  • Slomp, G. & F. A. MacKellar, 1962. Nuclear magnetic resonance studies on some hydrocarbon side chains of steroids. Journal of the American Chemical Society 84(2):204–206.

    Article  CAS  Google Scholar 

  • Smith, W., 1978. Carbon-13 NMR spectroscopy of steroids. Annual Reports on NMR Spectroscopy 8:199–226.

    Article  CAS  Google Scholar 

  • Steinberg, P. D. & R. De Nys, 2002. Chemical mediation of colonization of seaweed surfaces1. Journal of Phycology 38(4):621–629.

    Article  CAS  Google Scholar 

  • Suchanek, T. H. & D. J. Green, Interspecific competition between Palythoa caribaeorum and other sessile invertebrates on St. Croix reefs, US Virgin Islands. In: Proceedings of the 4th International Coral Reef Symposium, 1981. vol 2. p 679–684.

  • Sullivan, B., D. J. Faulkner & L. Webb, 1983. Siphonodictidine, a metabolite of the burrowing sponge Siphonodictyon sp. that inhibits coral growth. Science 221(4616):1175–1176.

    Article  CAS  PubMed  Google Scholar 

  • Swearingen III, D. & J. R. Pawlik, 1998. Variability in the chemical defense of the sponge Chondrilla nucula against predatory reef fishes. Marine Biology 131(4):619–627.

    Article  Google Scholar 

  • Ternon, E., L. Zarate, S. Chenesseau, J. Croué, R. Dumollard, M. T. Suzuki & O. P. Thomas, 2016. Spherulization as a process for the exudation of chemical cues by the encrusting sponge C. crambe. Scientific Reports 6 doi: https://doi.org/10.1038/srep29474.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thoms, C. & P. J. Schupp, 2007. Chemical defense strategies in sponges: a review. Porifera Research Biodiversity, Innovation and Sustainability Rio de Janeiro: Série Livros 28:627–637.

    Google Scholar 

  • Turon, X., M. A. Becerro & M. J. Uriz, 1996a. Seasonal patterns of toxicity in benthic invertebrates: The encrusting sponge Crambe crambe (Poecilosclerida). Oikos:33–40.

    Article  Google Scholar 

  • Turon, X., M. A. Becerro, M. J. Uriz & J. Llopis, 1996b. Small-scale association measures in epibenthic communities as a clue for allelochemical interactions. Oecologia 108(2):351–360.

    Article  PubMed  Google Scholar 

  • Voogd, N. d., L. Becking, B. Hoeksema & R. Soest, 2004. Sponge interactions with spatial competitors in the Spermonde Archipelago. Bolletino di Museo e Istituto di Biologia dell'Universita di Genova 68:253–261.

    Google Scholar 

  • Ward-Paige, C. A., M. J. Risk, O. A. Sherwood & W. C. Jaap, 2005. Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Marine Pollution Bulletin 51(5):570–579.

    Article  CAS  PubMed  Google Scholar 

  • Webster, N. S. & M. W. Taylor, 2012. Marine sponges and their microbial symbionts: love and other relationships. Environmental Microbiology 14(2):335–346.

    Article  CAS  PubMed  Google Scholar 

  • Weil, E., 2002. Sponge-induced coral mortality in the Caribbean. A potential new threat to Caribbean coral reefs. Boll Mus Ist Biol Univ, Genova:66–67.

    Google Scholar 

  • Wulff, J. L., 2006. Ecological interactions of marine sponges. Canadian Journal of Zoology 84(2):146–166.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to The Director, CSIR-National Institute of Oceanography, Goa, India for his support and encouragement. We also appreciate the help from Dr Asif Ali, CSIR-IIIM, Jammu in the characterization of the marker compound (β-sitosterol). We are grateful to Dr Filipe Natalio from Martin Luther University, Halle-Wittenberg, Germany for his valuable suggestions. We wish to express our appreciation to the editor and reviewers for their insightful comments. The author A. Singh is grateful to the CSIR, India for the award of junior and senior research fellowship.

Funding

This work was supported by CSIR funded project ‘Ocean Finder’ (Grant No. PSC0105) and Council of Scientific and Industrial Research, India (Grant No. 31/GATE/26(01)/2011-EMR-I). This manuscript has NIO contribution no. 6782. The First Author (Anshika Singh) acknowledges the financial support given by CSIR as JRF/SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsinh L. Thakur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The field collections carried out for the purpose of this paper did not involve endangered or protected species. No specific permission was required to collect the analysed sponge samples.

Additional information

Handling editor: Iacopo Bertocci

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Thakur, N.L. Allelopathic interaction among rocky intertidal invertebrates: sponge Cinachyrella cf. cavernosa and Zooxanthellate zoanthids Zoanthus sansibaricus. Hydrobiologia 848, 4647–4659 (2021). https://doi.org/10.1007/s10750-021-04667-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04667-x

Keywords

Navigation