Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37. https://doi.org/10.1007/s10750-012-1142-9.
Article
Google Scholar
Bakker, E. S., K. A. Wood, J. F. Pagès, G. F. Veen, M. J. A. Christianen, L. Santamaría, B. A. Nolet & S. Hilt, 2016. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany 135: 18–36. https://doi.org/10.1016/j.aquabot.2016.04.008.
Article
Google Scholar
Barko, J. W. & R. M. Smart, 1981. Sediment-based nutrition of submersed macrophytes. Aquatic Botany 10: 339–352. https://doi.org/10.1016/0304-3770(81)90032-2.
CAS
Article
Google Scholar
Barrat-Segretain, M.-H., 1996. Germination and colonisation dynamics of Nuphar lutea (L.) Sm. in a former river channel. Aquatic Botany 55: 31–38. https://doi.org/10.1016/0304-3770(96)01062-5.
Article
Google Scholar
Bengtsson, L. & T. Hellström, 1992. Wild-induced resuspension in a small shallow lake. Hydrobiologia 241: 163–172. https://doi.org/10.1007/bf00028639.
Article
Google Scholar
Bornette, G. & S. Puijalon, 2009. Macrophytes: Ecology of Aquatic Plants Encyclopedia of Life Sciences (ELS). Wiley, Chichester.
Google Scholar
Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14. https://doi.org/10.1007/s00027-010-0162-7.
CAS
Article
Google Scholar
Borst, A. C. W., W. C. E. P. Verberk, C. Angelini, J. Schotanus, J.-W. Wolters, M. J. A. Christianen, E. M. van der Zee, M. Derksen-Hooijberg & T. van der Heide, 2018. Foundation species enhance food web complexity through non-trophic facilitation. PLOS ONE 13: https://doi.org/10.1371/journal.pone.0199152.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bouleau, G. & D. Pont, 2015. Did you say reference conditions? Ecological and socio-economic perspectives on the European Water Framework Directive. Environmental Science & Policy 47: 32–41. https://doi.org/10.1016/j.envsci.2014.10.012.
Article
Google Scholar
Chambers, P. A. & J. Kalff, 1987. Light and nutrients in the control of aquatic plant community structure. I. situ experiments. Journal of Ecology 75: 611–619. https://doi.org/10.2307/2260193.
Article
Google Scholar
Dorenbosch, M., A. Bak, L. N. de Senerpont Domis, E. S. Bakker, R. Loeb, A. J. P. Smolders, R. J. M. Temmink & T. van der Heide, 2017. Sleutelfactoren voor de groei en overleving van submerse waterplanten. Effecten van licht, perifyton, bodemstructuur en -chemie, verspreiding en graas | Key factors for the growth and survival of submerged macrophytes. Effects of light, perifyton, soil chemistry and -structure, dispersal and herbivory. Bureau Waardenburg Rapportnr. 16-174. Bureau Waardenburg, AKWA / NIOO, B-WARE en Radboud Universiteit Nijmegen.
Forsberg, C., 1965. Sterile germination of oospores of Chara and seeds of Najas marina. Physiologia Plantarum 18: 128–137. https://doi.org/10.1111/j.1399-3054.1965.tb06875.x.
Article
Google Scholar
Fraters, B., A. Hooijboer, G. Rijs, N. van Duijnhoven & J. C. Rozemeijer, 2017. Waterkwaliteit in Nederland; toestand (2012-2015) en trend (1992-2015): Addendum bij rapport 2016-0076.
Gulati, R. D. & E. van Donk, 2002. Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobiologia 478: 73–106. https://doi.org/10.1023/a:1021092427559.
Article
Google Scholar
Hammer, D. A. & R. Bastian, 1989. Wetlands ecosystems: natural water purifiers. Constructed wetlands for wastewater treatment: municipal, industrial and agricultural 5.
Handley, R. J. & A. J. Davy, 2002. Seedling root establishment may limit Najas marina L. to sediments of low cohesive strength. Aquatic Botany 73: 129–136. https://doi.org/10.1016/S0304-3770(02)00015-3.
Article
Google Scholar
Immers, A., E. Bakker, E. Van Donk, G. Ter Heerdt, J. Geurts & S. Declerck, 2015. Fighting internal phosphorus loading: an evaluation of the large scale application of gradual Fe-addition to a shallow peat lake. Ecological Engineering 83: 78–89. https://doi.org/10.1016/j.ecoleng.2015.05.034.
Article
Google Scholar
Jackson, R. B., S. R. Carpenter, C. N. Dahm, D. M. McKnight, R. J. Naiman, S. L. Postel & S. W. Running, 2001. Water in a changing world. Ecological Applications 11:1027–1045. https://doi.org/10.1890/1051-0761(2001)011%5b1027:wiacw%5d2.0.co;2.
Lamers, L. P. M., A. J. P. Smolders & J. G. M. Roelofs, 2002. The restoration of fens in the Netherlands. Hydrobiologia 478: 107–130. https://doi.org/10.1023/a:1021022529475.
Article
Google Scholar
Lamers, L. P. M., L. L. Govers, I. C. J. M. Janssen, J. J. M. Geurts, M. E. W. Van der Welle, M. M. Van Katwijk, T. Van der Heide, J. G. M. Roelofs & A. J. P. Smolders, 2013. Sulfide as a soil phytotoxin—a review. Frontiers in Plant Science 4: 268. https://doi.org/10.3389/fpls.2013.00268.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lehner, B. & P. Döll, 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296: 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028.
Article
Google Scholar
Łoboda, A., Ł. Przyborowski, M. Karpiński, R. Bialik & V. Nikora, 2018. Biomechanical properties of aquatic plants: the effect of test conditions. Limnology and Oceanography: Methods 16: 222–236. https://doi.org/10.1002/lom3.10239.
Article
Google Scholar
Murphy, K., A. Efremov, T. A. Davidson, E. Molina-Navarro, K. Fidanza, T. C. C. Betiol, P. Chambers, J. T. Grimaldo, S. V. Martins & I. Springuel, 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany 158: https://doi.org/10.1016/j.aquabot.2019.06.006.
Article
Google Scholar
National Research Council Committee, 2010. Hydrogen sulfide acute exposure guideline levels Acute exposure guideline levels for selected airborne chemicals: volume 9. National Academies Press (US).
Netten, J. J., G. H. Arts, R. Gylstra, E. H. van Nes, M. Scheffer & R. M. Roijackers, 2010. Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms. Fundamental and Applied Limnology 177: 125. https://doi.org/10.1127/1863-9135/2010/0177-0125.
Article
Google Scholar
Nurminen, L. & J. Horppila, 2006. Efficiency of fish feeding on plant-attached prey: effects of inorganic turbidity and plant-mediated changes in the light environment. Limnology and Oceanography 51: 1550–1555. https://doi.org/10.4319/lo.2006.51.3.1550.
Article
Google Scholar
Phillips, G., N. Willby & B. Moss, 2016. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquatic Botany 135: 37–45. https://doi.org/10.1016/j.aquabot.2016.04.004.
Article
Google Scholar
R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Google Scholar
Roessink, I., R. Gylstra, P. G. Heuts, B. Specken & F. Ottburg, 2017. Impact of invasive crayfish on water quality and aquatic macrophytes in the Netherlands. Aquatic Invasions. https://doi.org/10.3391/ai.2017.12.3.12.
Article
Google Scholar
Scheffer, M., 1997. Ecology of Shallow Lakes, Vol. 22. Springer, New York.
Google Scholar
Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596. https://doi.org/10.1038/35098000.
CAS
Article
PubMed
Google Scholar
Scheffer, M., S. Szabó, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences 100: 4040–4045. https://doi.org/10.1073/pnas.0737918100.
CAS
Article
Google Scholar
Schoelynck, J., K. Bal, V. Verschoren, E. Penning, E. Struyf, T. Bouma, D. Meire, P. Meire & S. Temmerman, 2014. Different morphology of Nuphar lutea in two contrasting aquatic environments and its effect on ecosystem engineering. Earth Surface Processes and Landforms 39: 2100–2108. https://doi.org/10.1002/esp.3607.
Article
Google Scholar
Schutten, J., J. Dainty & A. J. Davy, 2005. Root anchorage and its significance for submerged plants in shallow lakes. Journal of Ecology 93: 556–571. https://doi.org/10.1111/j.1365-2745.2005.00980.x.
Article
Google Scholar
Seto, M., N. Takamura & Y. Iwasa, 2013. Individual and combined suppressive effects of submerged and floating-leaved macrophytes on algal blooms. Journal of Theoretical Biology 319: 122–133. https://doi.org/10.1016/j.jtbi.2012.11.016.
Article
PubMed
Google Scholar
Smolders, A. J. P., L. P. M. Lamers, E. Lucassen, G. Van der Velde & J. G. M. Roelofs, 2006. Internal eutrophication: how it works and what to do about it—a review. Chemistry and Ecology 22: 93–111. https://doi.org/10.1080/02757540600579730.
CAS
Article
Google Scholar
Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506: 135–145. https://doi.org/10.1023/B:HYDR.0000008611.12704.dd.
Article
Google Scholar
Song, X., Z. Wang, B. Xiao, E. Li & X. Wang, 2017. Growth of Potamogeton crispus L. from turions in darkness: Implications for restoring submerged plants in eutrophic lakes. Ecological Engineering 101: 255–260. https://doi.org/10.1016/j.ecoleng.2017.01.035.
Article
Google Scholar
Strange, E., J. Hill & J. Coetzee, 2018. Evidence for a new regime shift between floating and submerged invasive plant dominance in South Africa. Hydrobiologia 817: 349–362. https://doi.org/10.1007/s10750-018-3506-2.
Article
Google Scholar
Temmink, RJM., Dorenbosch, M., Lamers, LPM., Smolders, AJP., Rip, W., Lengkeek, W., Didderen, K., Fivash, GS., Bouma, TJ. & van der Heide, T. 2021. Data from: Growth forms and life-history strategies predict the occurrence of aquatic macrophytes in relation to environmental factors in a shallow peat lake complex, DANS, https://doi.org/10.17026/dans-xee-h224.
van Bergen, T. J. H. M., R. J. M. Temmink, L. van Tweel-Groot, W. J. Bakker, K. Rehlmeyer, A. H. W. Koks, A. C. Waajen, J. G. M. Roelofs, A. P. Grootjans, T. van der Heide & L. P. M. Lamers, 2020. Self-facilitation and negative species interactions could drive microscale vegetation mosaic in a floating fen. Journal of Vegetation Science 31: 343–354. https://doi.org/10.1111/jvs.12851.
Article
Google Scholar
van de Haterd, R. J. W. & G. N. J. ter Heerdt, 2007. Potential for the development of submerged macrophytes in eutrophicated shallow peaty lakes after restoration measures. Hydrobiologia 584: 277–290. https://doi.org/10.1007/s10750-007-0593-x.
Article
Google Scholar
van Vierssen, W., 1982. Some notes on the germination of seeds of Najas marina L. Aquatic Botany 12: 201–203. https://doi.org/10.1016/0304-3770(82)90015-8.
Article
Google Scholar
van Zuidam, J. P. & E. T. H. M. Peeters, 2012. Cutting affects growth of Potamogeton lucens L. and Potamogeton compressus L. Aquatic Botany 100: 51–55. https://doi.org/10.1016/j.aquabot.2012.02.005.
Article
Google Scholar
Verhofstad, M. J. J. M., M. M. Alirangues Núñez, E. P. Reichman, E. van Donk, L. P. M. Lamers & E. S. Bakker, 2017. Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: roles of light, sediment nutrient levels, and propagule density. Aquatic Botany 141: 29–38. https://doi.org/10.1016/j.aquabot.2017.04.004.
Article
Google Scholar
Wahl, M., 2008. Ecological modulation of environmental stress: interactions between ultraviolet radiation, epibiotic snail embryos, plants and herbivores. Journal of Animal Ecology 1: 549–557. https://doi.org/10.1111/j.1365-2656.2007.01352.x.
Article
Google Scholar
Wiegleb, G., H. Brux & W. Herr, 1991. Human impact on the ecological performance of Potamogeton species in northwestern Germany. Vegetatio 97: 161–172. https://doi.org/10.1007/bf00035389.
Article
Google Scholar
Wigand, C., J. C. Stevenson & J. C. Cornwell, 1997. Effects of different submersed macrophytes on sediment biogeochemistry. Aquatic Botany 56: 233–244. https://doi.org/10.1016/S0304-3770(96)01108-4.
CAS
Article
Google Scholar
Zeeuw, J Wd, 1978. Peat and the Dutch Golden Age. The historical meaning of energy-attainability. AAG Bijdragen 21: 3–31.
Google Scholar
Zhu, G., G. Di, M. Zhang, T. Cao, L. Ni, R. Fang & G. Yu, 2018a. Biomechanical response of a submerged, rosette-forming macrophyte to wave action in a eutrophic lake on the Yungui Plateau, China. Environmental Science and Pollution Research 25: 34027–34045. https://doi.org/10.1007/s11356-018-3047-2.
Article
PubMed
Google Scholar
Zhu, G., C. Yuan, G. Di, M. Zhang, L. Ni, T. Cao, R. Fang & G. Wu, 2018b. Morphological and biomechanical response to eutrophication and hydrodynamic stresses. Science of the Total Environment 622: 421–435. https://doi.org/10.1016/j.scitotenv.2017.11.322.
CAS
Article
Google Scholar