Skip to main content
Log in

Assessing maximum depth distribution, vegetated area, and production of submerged macrophytes in shallow, turbid coastal lagoons of the southern Baltic Sea

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Submerged macrophytes improve water quality in shallow coastal lagoons but eutrophication often resulted in a degradation of macrophytes. Management measures that protect and restore macrophyte stands require knowledge on what limits macrophyte distribution. Information on macrophyte production and distribution in the Darss-Zingst Bodden Chain (southern Baltic Sea) is lacking since an almost complete loss of submerged vegetation in the 1980s. Nutrient input was reduced in the 1990s and macrophytes seem to recover, although turbidity is high and light conditions are still poor. However, this recovery raised hope that returning macrophytes could stabilize sediments and improve water clarity. In this study, seasonal changes in photosynthesis–irradiance curves of selected macrophyte species were used to calculate potential primary production in different depths and turbidity situations. Bathymetry of the area is then used to assess depth distribution and vegetated area. Since the so-calculated depth limits correspond well with the actual depth distribution in the field, macrophyte depth distribution is concluded to be mostly determined by light conditions. Most macrophytes grow in very shallow areas up to 50 cm depth where also 70% of potential primary production takes place. Present light conditions do not support a further expansion of macrophyte distribution in the DZBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Badiou, P. H. J. & L. G. Goldsborough, 2015. Ecological impacts of an exotic benthivorous fish, the common carp (Cyprinus carpio L.), on water quality, sedimentation, and submerged macrophyte biomass in wetland mesocosms. Hydrobiologia 755: 107–121.

    Article  CAS  Google Scholar 

  • Behrens, J., 1982. Soziologische und produktionsbiologische Untersuchungen an den submersen Pflanzengesellschaften der Darß-Zingster Boddengewässer. Thesis, University of Rostock.

  • Blümel, C., A. Domin, J. Krause, M. Schubert, U. Schiewer & H. Schubert, 2002. Der historische Makrophytenbewuchs der inneren Gewässer der deutschen Ostseeküste. Rostocker Meeresbiologische Beiträge 10: 5–111.

    Google Scholar 

  • Dahlgren, S. & L. Kautsky, 2004. Can different vegetative states in shallow coastal bays of the Baltic Sea be linked to internal nutrient levels and external nutrient load? Hydrobiologia 514: 249–258.

    Article  CAS  Google Scholar 

  • Domin, A., H. Schubert, J. C. Krause & U. Schiewer, 2004. Modelling of pristine depth limits for macrophyte growth in the southern Baltic Sea. Hydrobiologia 514: 29–39.

    Article  Google Scholar 

  • Eggert, A., S. Ihnken, U. Selig, U. Karsten & H. Schubert, 2006. Distribution of three submersed macrophytes in coastal lagoons of the German Baltic Sea: comparison of laboratory and field data. Botanica Marina 49: 386–395.

    Article  Google Scholar 

  • Festerling, E., 1973. Ökologische und produktionsbiologische Untersuchungen am Phytobenthos der Darßer Boddengewässer. Thesis, University of Rostock.

  • Forster, S. & F. Bitschofsky, 2015. Different reasons for low pore water phosphate concentrations observed at a shallow brackish site in a German Baltic Sea lagoon. Rostocker Meeresbiologische Beiträge 25: 119–131.

    Google Scholar 

  • Jeppesen, E., 1998. The Ecology of Shallow Lakes. NERI Technical Report No. 247 Silkeborg, Danmark, 420p.

  • Küster, A., R. Schaible & H. Schubert, 2004. Light acclimation of photosynthesis in three charophyte species. Aquatic Botany 79: 111–204.

    Article  Google Scholar 

  • Lamers, L. P. M., L. L. Govers, I. I. C. J. M. Janssen, J. J. M. Geurts, M. E. W. Van der Welle, M. M. Van Katwijk, T. Van der Heide, J. G. M. Roelofs & A. J. P. Smolders, 2013. Sulfide as a soil phytotoxin-a review. Frontiers in Plant Science 4: 268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lampert, W. & U. Sommer, 1999. Limnoökologie. Thieme, Stuttgart.

    Google Scholar 

  • Lindner, A., 1972. Soziologisch-ökologische Untersuchungen an der submersen Vegetation in der Boddenkette südlich des Darß und des Zingst. Thesis, University of Rostock.

  • Luft, P., 2012. Attenuation und spektrales Unterwasserlichtklima im Gradienten der Darß-Zingster Boddenkette. Bachelor Thesis, University of Rostock.

  • LUNG, 2013. Zur Entwicklung und zum Stand der Nährstoffbelastung der Küstengewässer Mecklenburg-Vorpommerns. Berichte zur Gewässergüte, herausgegeben vom Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern (LUNG). Güstrow.

  • McGlathery, K., K. Sundbäck & I. Anderson, 2007. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Marine Ecology Progress Series 348: 1–18.

    Article  CAS  Google Scholar 

  • Menendez, M. & A. Sanchez, 1998. Seasonal variations in P-I responses of Chara hispida L. and Potamogeton pectinatus L. from stream mediterranean ponds. Aquatic Botany 61: 1–15.

    Article  Google Scholar 

  • Middelboe, A. L. & S. Markager, 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568.

    Article  Google Scholar 

  • Munkes, B., 2005. Eutrophication, phase shift, the delay and the potential return in the Greifswalder Bodden, Baltic Sea. Aquatic Sciences 67: 372–381.

    Article  CAS  Google Scholar 

  • Pehlke, C., U. Selig & H. Schubert, 2008. Verbreitung und Ökophysiologie von Fucus -Beständen der Mecklenburger Bucht (südliche Ostseeküste). Rostocker Meeresbiologische Beiträge 20: 123–142.

    Google Scholar 

  • Porra, R. J., W. A. Thompson & P. E. Kriedemann, 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta 975: 384–394.

    Article  CAS  Google Scholar 

  • Porsche, C., H. Schubert & U. Selig, 2008. Rezente Verbreitung submerser Makrophyten in den inneren Küstengewässern der deutschen Ostseeküste. Rostocker Meeresbiologische Beiträge 20: 109–122.

    Google Scholar 

  • Sandsten, H., M. Beklioglu & Ö. Ince, 2005. Effects of waterfowl, large fish and periphyton on the spring growth of Potamogeton pectinatus L. in Lake Mogan. Turkey. Hydrobiologia 537: 239–248.

    Article  Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Schiewer, U., 1998. 30 years’ eutrophication in shallow brackish waters – lessons to be learned. Hydrobiologia 363: 73–79.

    Article  Google Scholar 

  • Schiewer, U., 2008. Darß-Zingst Boddens, Northern Rügener Boddens and Schlei. In Schiewer, U. (ed.), Ecology of Baltic Coastal Waters. Springer, Berlin: 35–86.

    Chapter  Google Scholar 

  • Schlungbaum, G. & H. Baudler, 2001. Wasserhaushalt und Salzgehaltsverhältnisse in den Bodden – ein Vergleich mit anderen Küstengewässern. Meer und Museum 16: 17–24.

    Google Scholar 

  • Schories, D., U. Selig, & H. Schubert, 2005. Testung des Klassifizierungsansatzes Mecklenburg-Vorpommern (innere Küstengewässer) unter den Bedingungen Schleswig-Holsteins und Ausdehnung des Ansatzes auf die Außenküste. LAWA Project Report.

  • Schubert, H., C. Blümel, A. Eggert, T. Rieling, M. Schubert, & U. Selig, 2003. Entwicklung von leitbildorientierten Bewertungsgrundlagen für innere Küstengewässer der deutschen Ostseeküste nach der EU-WRRL. BMBF Project Report FKZ 0330014.

  • Schumann, R. & U. Karsten, 2006. Phytoplankton im Zingster Strom der Darß-Zingster Boddenkette – 13 Jahre Remesotrophierung. Rostocker Meeresbiologische Beiträge 16: 47–59.

    Google Scholar 

  • Selig, U., H. Baudler, M. Krech & G. Nausch, 2006. Nutrient accumulation and nutrient retention in coastal waters – 30 years investigation in the Darss-Zingst Bodden chain. Acta Hydrochimica et Hydrobiologica 34: 9–19.

    Article  CAS  Google Scholar 

  • Selig, U., A. Eggert, D. Schories, M. Schubert, C. Blümel & H. Schubert, 2007. Ecological classification of macroalgae and angiosperm communities of inner coastal waters in the southern Baltic Sea. Ecological Indicators 7: 665–678.

    Article  CAS  Google Scholar 

  • Teubner, J., 1989. Quantitative und qualitative Erfassung submerser Makrophyten 1986/1987 – Luftbildanalyse. Diploma Thesis, University of Rostock.

  • van den Berg, M. S., H. Coops, J. Simons & A. De Keizer, 1998. Competition between Chara aspera and Potamogeton pectinatus as a function of temperature and light. Aquatic Botany 60: 241–250.

    Article  Google Scholar 

  • van den Berg, M. S., H. Coops, J. Simons & J. Pilon, 2002. A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. Aquatic Botany 72: 219–233.

    Article  Google Scholar 

  • Viaroli, P., M. Bartoli, G. Giordani, M. Naldi, S. Orfanidis & J. M. Zaldivar, 2008. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 105–117.

    Article  Google Scholar 

  • Vietinghoff, U., 1982. Die mathematische Modellierung des Ökosystems Barther Bodden als Beitrag zur Ökosystemanalyse der Boddenkette West. Dissertation, University of Rostock.

  • Walsby, A. E., 1997. Numerical integration of phytoplankton photosynthesis through time and depth in a water column. New Phytologist 136: 189–209.

    Article  CAS  Google Scholar 

  • Winkler, H. M., 2004. Fischgemeinschaften in der Darß-Zingster Boddenkette, fischbiologische Arbeiten – ein kurzer Rückblick. Rostocker Meeresbiologische Beiträge 13: 253–260.

    Google Scholar 

  • Wolfstein, K. & P. Hartig, 1998. The photosynthetic light dispensation system: application to microphytobenthic primary production measurements. Marine Ecology Progress Series 166: 63–71.

    Article  Google Scholar 

  • Yousef, M. A. M. & H. Schubert, 2001. Assessment of the occurrence of Charophytes in shallow coastal waters of Mecklenburg-Vorpommern, Germany. Schriftenreihe für Landschaftspflege und Naturschutz 72: 9–16.

    Google Scholar 

  • Zimmerman, R. C., A. Cabello-Pasini & R. S. Alberte, 1994. Modelling daily production of aquatic macrophytes from irradiance measurements: a comparative analysis. Marine Ecology Progress Series 114: 185–196.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Irmgard Blindow, Stefanie Nolte, Hendrik Schubert, and two anonymous reviewers for useful comments on the manuscript. Marion Kruse kindly provided the map of the study site. I am also grateful for funding by the “Forschungsstiftung Ostsee” (04/2014) and the German Federal Ministry of Education and Research (BMBF, 03F0665 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Piepho.

Additional information

Handling editor: Pierluigi Viaroli

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piepho, M. Assessing maximum depth distribution, vegetated area, and production of submerged macrophytes in shallow, turbid coastal lagoons of the southern Baltic Sea. Hydrobiologia 794, 303–316 (2017). https://doi.org/10.1007/s10750-017-3107-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3107-5

Keywords

Navigation