Skip to main content

Advertisement

Log in

Knowing your limits: evaluating aquatic metabolism in a subtropical treatment wetland

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

To the casual eye the biota of flowing waters is rich.

– (Odum, 1956)

Abstract

Changes in dissolved oxygen (DO) within aquatic ecosystems integrate dynamic biological, physical, and chemical processes that control the rate of ecosystem metabolism. Aquatic ecosystem metabolism can be characterized by the diel change in DO changes over time and is expressed as the net aquatic productivity (NAP) based on the balance of gross primary productivity (GPP) and ecosystem respiration (ER). This study investigated aquatic metabolism of dominant emergent and submerged aquatic vegetation (EAV and SAV, respectively) within two treatment flow-ways of Stormwater Treatment Area 2 (STA-2) in the Everglades ecosystem. This study hypothesizes that aquatic metabolism will differ between aquatic vegetation communities with SAV communities having a greater GPP and ER rate than EAV communities driven by biophysical, hydrodynamic, and biogeochemical differences between systems. Aquatic metabolism observed in this study varied spatially (along flow-ways) and temporally (diel to days) controlled by different factors related to biological, physical, and chemical processes. This study suggests that ecosystem metabolism is controlled differently across flow-ways with varying levels of response to loading/transport and water quality resulting in differences in organic matter accumulation, C turnover, and P cycling. The relationship between GPP and TP concentrations could be an indicator of P-removal efficiency and ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data available upon request.

References

  • Beck, M. W., 2016. SWMPr: an R package for retrieving, organizing, and analyzing environmental data for estuaries. The R Journal 8: 219.

    Article  Google Scholar 

  • Bhomia, R. K., P. W. Inglett & K. R. Reddy, 2015. Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example. Science of the Total Environment 533: 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Blanco, S., S. Romo, & M.-J. Villena, 2004. Experimental study on the diet of mosquitofish (Gambusia holbrooki) under different ecological conditions in a shallow lake. International Review of Hydrobiology 89: 250–262.

    Article  Google Scholar 

  • Bohman, I. M., & L. J. Tranvik, 2001. The effects of shredding invertebrates on the transfer of organic carbon from littoral leaf litter to water-column bacteria. Aquatic Ecology 35: 43–50.

    Article  Google Scholar 

  • Bruland, G. L., T. Z. Osborne, K. R. Reddy, S. Grunwald, S. Newman & W. F. DeBusk, 2007. Recent changes in soil total phosphorus in the Everglades: Water Conservation Area 3. Environmental Monitoring and Assessment 129: 379–395.

    Article  CAS  PubMed  Google Scholar 

  • Caffrey, J. M., 2004. Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries 27: 90–101.

    Article  CAS  Google Scholar 

  • Caffrey, J. M., M. C. Murrell, K. S. Amacker, J. W. Harper, S. Phipps & M. S. Woodrey, 2014. Seasonal and inter-annual patterns in primary production, respiration, and net ecosystem metabolism in three estuaries in the Northeast Gulf of Mexico. Estuaries and Coasts 37: 222–241.

    Article  Google Scholar 

  • Caraco, N. F. & J. J. Cole, 2002. Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecological Applications 12: 1496–1509.

    Article  Google Scholar 

  • Caraco, N., J. Cole, S. Findlay & C. Wigand, 2006. Vascular plants as engineers of oxygen in aquatic systems. BioScience 56: 219–225.

    Article  Google Scholar 

  • Carignan, R., D. Planas & C. Vis, 2000. Planktonic production and respiration in oligotrophic Shield lakes. Limnology and Oceanography 45: 189–199.

    Article  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Article  Google Scholar 

  • Chen, H., D. Ivanoff & K. Pietro, 2015. Long-term phosphorus removal in the Everglades stormwater treatment areas of South Florida in the United States. Ecological Engineering 79: 158–168.

    Article  Google Scholar 

  • Chimney, M. J. & G. Goforth, 2001. Environmental impacts to the Everglades ecosystem: a historical perspective and restoration strategies. Water Science and Technology 44: 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J. J., M. L. Pace, S. R. Carpenter & J. F. Kitchell, 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45: 1718–1730.

    Article  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Collins, J. R., P. A. Raymond, W. F. Bohlen & M. M. Howard-Strobel, 2013. Estimates of new and total productivity in Central Long Island Sound from in situ measurements of nitrate and dissolved oxygen. Estuaries and Coasts 36: 74–97.

    Article  CAS  Google Scholar 

  • Corstanje, R., D. R. Grafius, J. Zawadzka, J. Moreira Barradas, G. Vince, D. Ivanoff & K. Pietro, 2016. A data mining approach to identifying spatial patterns of phosphorus forms in the Stormwater Treatment Areas in the Everglades, US. Ecological Engineering 97: 567–576.

    Article  Google Scholar 

  • Cox, B. A., 2003. A review of dissolved oxygen modelling techniques for lowland rivers. Science of the Total Environment 314–316: 303–334.

    Article  CAS  PubMed  Google Scholar 

  • DeBusk, T. A., K. A. Grace, F. E. Dierberg, S. D. Jackson, M. J. Chimney & B. Gu, 2004. An investigation of the limits of phosphorus removal in wetlands: a mesocosm study of a shallow periphyton-dominated treatment system. Ecological Engineering 23: 1–14.

    Article  Google Scholar 

  • del Giorgio, P. A. & R. H. Peters, 1994. Patterns in planktonic P: R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnology and Oceanography 39: 772–787.

    Article  Google Scholar 

  • Demars, B. O. L., J. Thompson & J. R. Manson, 2015. Stream metabolism and the open diel oxygen method: principles, practice, and perspectives: problems in stream metabolism studies. Limnology and Oceanography: Methods 13: 356–374.

    Google Scholar 

  • Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences 47: 1468–1477.

    Article  CAS  Google Scholar 

  • Ewe, S. M. L., E. E. Gaiser, D. L. Childers, D. Iwaniec, V. H. Rivera-Monroy & R. R. Twilley, 2006. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569: 459–474.

    Article  Google Scholar 

  • Flöder, S. & U. Sommer, 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnology and Oceanography 44: 1114–1119.

    Article  Google Scholar 

  • Gohel, D., 2021. flextable: Functions for tabular reporting. CRAN R-Project [available on internet at http://CRAN.R-project.org/package=flextable]. Accessed 28 March 2021.

  • Hagerthey, S. E., J. J. Cole & D. Kilbane, 2010. Aquatic metabolism in the Everglades: dominance of water column heterotrophy. Limnology and Oceanography 55: 653–666.

    Article  CAS  Google Scholar 

  • Hanson, P. C., D. L. Bade, S. R. Carpenter & T. K. Kratz, 2003. Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnology and Oceanography 48: 1112–1119.

    Article  CAS  Google Scholar 

  • Hanson, P. C., S. R. Carpenter, N. Kimura, C. Wu, S. P. Cornelius & T. K. Kratz, 2008. Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. Limnology and Oceanography: Methods 6: 454–465.

    CAS  Google Scholar 

  • Harris, W., 2011. Mineral distribution and weathering in the Greater Everglades: implications for restoration. Critical Reviews in Environmental Science and Technology 41: 4–27.

    Article  CAS  Google Scholar 

  • Hoellein, T. J., D. A. Bruesewitz & D. C. Richardson, 2013. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnology and Oceanography 58: 2089–2100.

    Article  CAS  Google Scholar 

  • Hornbach, D. J., M. C. Hove, M. W. Ensley-Field, M. R. Glasenapp, I. A. Goodbar, J. D. Harman, B. D. Huber, E. A. Kangas, K. X. Liu, M. Stark-Ragsdale & L. K. Tran, 2017. Comparison of ecosystem processes in a woodland and prairie pond with different hydroperiods. Journal of Freshwater Ecology 32: 675–695.

    Article  CAS  Google Scholar 

  • Hotchkiss, E. R., R. O. Hall Jr., R. A. Sponseller, D. Butman, J. Klaminder, H. Laudon, M. Rosvall & J. Karlsson, 2015. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nature Geoscience 8: 696–699.

    Article  CAS  Google Scholar 

  • Hotchkiss, E. R., S. Sadro & P. C. Hanson, 2018. Toward a more integrative perspective on carbon metabolism across lentic and lotic inland waters. Limnology and Oceanography Letters 3: 57–63.

    Article  Google Scholar 

  • Julian, P. & T. Z. Osborne, 2018. From lake to estuary, the tale of two waters: a study of aquatic continuum biogeochemistry. Environment Monitoring and Assessment 190: 1–24.

    Article  Google Scholar 

  • Julian, P., S. Gerber, A. L. Wright, B. Gu & T. Z. Osborne, 2017. Carbon pool trends and dynamics within a subtropical peatland during long-term restoration. Ecological Processes 6: 43–57.

    Article  Google Scholar 

  • Julian, P., S. Gerber, R. K. Bhomia, J. King, T. Z. Osborne, A. L. Wright, M. Powers & J. Dombrowski, 2019. Evaluation of nutrient stoichiometric relationships among ecosystem compartments of a subtropical treatment wetland. Do we have “Redfield wetlands”? Ecological Processes 8: 20.

    Article  Google Scholar 

  • Juston, J. & T. A. DeBusk, 2006. Phosphorus mass load and outflow concentration relationships in stormwater treatment areas for Everglades restoration. Ecological Engineering 26: 206–223.

    Article  Google Scholar 

  • Juston, J. M. & T. A. DeBusk, 2011. Evidence and implications of the background phosphorus concentration of submerged aquatic vegetation wetlands in Stormwater Treatment Areas for Everglades restoration. Water Resources Research. https://doi.org/10.1029/2010WR009294.

    Article  Google Scholar 

  • Juston, J. M. & R. H. Kadlec, 2019. Data-driven modeling of phosphorus (P) dynamics in low-P stormwater wetlands. Environmental Modelling and Software 118: 226–240.

    Article  Google Scholar 

  • Kadlec, R. H. & S. D. Wallace, 2009. Treatment Wetlands. CRC Press, Boca Raton.

    Google Scholar 

  • Kelly, P. T., C. T. Solomon, J. A. Zwart & S. E. Jones, 2018. A framework for understanding variation in pelagic gross primary production of lake ecosystems. Ecosystems 21: 1364–1376.

    Article  CAS  Google Scholar 

  • Kominoski, J. S., E. E. Gaiser, E. Castañeda‐Moya, S. E. Davis, S. Dessu, P. Julian, D. Y. Lee, L. Marazzi, V. H. Rivera‐Monroy & A. Sola, 2020. Disturbance legacies increase and synchronize nutrient concentrations and bacterial productivity in coastal ecosystems. Ecology 101(5): e02988.

    Article  PubMed  Google Scholar 

  • Liao, C.-H. & M. D. Gurol, 1995. Chemical oxidation by photolytic decomposition of hydrogen peroxide. Environmental Science and Technology 29: 3007–3014.

    Article  CAS  PubMed  Google Scholar 

  • Maier, M., 2015. Companion Package to the Book “`R: Einführung durch angewandte Statistik”. CRAN R-Project.

  • McCormick, P. V. & J. A. Laing, 2003. Effects of increased phosphorus loading on dissolved oxygen in a subtropical wetland, the Florida Everglades. Wetlands Ecology and Management 11: 199–216.

    Article  CAS  Google Scholar 

  • McCormick, P. V., R. B. E. Shuford III, J. G. Backus & W. C. Kennedy, 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.A. Hydrobiologia 362: 185–210.

    Article  Google Scholar 

  • McKenna, J. E., 2003. Community metabolism during early development of a restored wetland. Wetlands 23: 35–50.

    Article  Google Scholar 

  • McLatchey, G. P. & K. R. Reddy, 1998. Regulation of organic matter decomposition and nutrient release in a wetland soil. Journal of Environmental Quality 27: 1268–1274.

    Article  CAS  Google Scholar 

  • Minkkinen, K. & J. Laine, 1998. Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Canadian Journal of Forest Research 28: 1267–1275.

    Article  Google Scholar 

  • Mosisch, T. D. & S. E. Bunn, 1997. Temporal patterns of rainforest stream epilithic algae in relation to flow-related disturbance. Aquatic Botany 58: 181–193.

    Article  Google Scholar 

  • Mulholland, P. J., C. S. Fellows, J. L. Tank, N. B. Grimm, J. R. Webster, S. K. Hamilton, E. Martí, L. Ashkenas, W. B. Bowden, W. K. Dodds, W. H. Mcdowell, M. J. Paul & B. J. Peterson, 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology 46: 1503–1517.

    Article  CAS  Google Scholar 

  • Newbold, J. D., 1987. Phosphorus spiralling in rivers and river-reservoir systems: implications of a model. In Craig, J. F. & J. B. Kemper (eds), Regulated Streams. Springer: 303–327. https://doi.org/10.1007/978-1-4684-5392-8_21.

  • Newman, S., T. Z. Osborne, S. E. Hagerthey, C. Saunders, K. Rutchey, T. Schall & K. R. Reddy, 2017. Drivers of landscape evolution: multiple regimes and their influence on carbon sequestration in a sub-tropical peatland. Ecological Monographs 87: 578–599.

    Article  Google Scholar 

  • Newman, S. & K. Pietro, 2001. Phosphorus storage and release in response to flooding: implications for Everglades stormwater treatment areas. Ecological Engineering 18: 23–38.

    Article  Google Scholar 

  • NOAA, 2013. CDMO NERR SWMP Data Management Manual. Belle W. Brauch Institute for Marine and Coastal Sciences, Georgetown: 242.

    Google Scholar 

  • Noe, G. B., D. L. Childers & R. D. Jones, 2001. Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4: 603–624.

    Article  CAS  Google Scholar 

  • O’Donnell, B. & E. R. Hotchkiss, 2019. Coupling concentration- and process-discharge relationships integrates water chemistry and metabolism in streams. Water Resources Research. https://doi.org/10.1029/2019WR025025.

    Article  Google Scholar 

  • Odum, H. T., 1956. Primary production in flowing waters. Limnology and Oceanography 1: 102–117.

    Article  Google Scholar 

  • Oksanen, J. & F. Guillaume, 2018. Vegan: Ecological Diversity. CRAN R-Project: 12.

  • Olson, C. R., C. T. Solomon & S. E. Jones, 2020. Shifting limitation of primary production: experimental support for a new model in lake ecosystems. Ecology Letters. https://doi.org/10.1111/ele.13606.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osborne, T. Z., G. L. Bruland, S. Newman, K. R. Reddy & S. Grunwald, 2011. Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park. Environmental Monitoring and Assessment 183: 395–408.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, K. R. & R. D. DeLaune, 2008. Biogeochemistry of Wetlands: Science and Applications. CRC Press, Boca Raton.

    Book  Google Scholar 

  • Reddy, K. R., S. Newman, T. Z. Osborne, J. R. White & H. C. Fitz, 2011. Phosphorous cycling in the Greater Everglades Ecosystem: legacy phosphorous implications for management and restoration. Critical Reviews in Environmental Science and Technology 41: 149–186.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & H. Frost-Christensen, 1998. Photosynthesis of amphibious and obligately submerged plants in CO2-rich lowland streams. Oecologia 117: 31–39.

    Article  PubMed  Google Scholar 

  • Sand-Jensen, K., C. Prahl & H. Stokholm, 1982. Oxygen release from roots of submerged aquatic macrophytes. Oikos 38: 349–354.

    Article  Google Scholar 

  • Sand‐Jensen, K., M. F. Pedersen & S. L. Nielsen, 1992. Photosynthetic use of inorganic carbon among primary and secondary water plants in streams. Freshwater Biology 27: 283–293.

    Article  Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science American Association for the Advancement of Science 195: 260–262.

    Article  CAS  Google Scholar 

  • South Florida Water Management District, 2013. Restoration Strategies Regional Water Quality Plan: Science Plan for the Everglades Stormwater Treatment Areas. South Florida Water Management District, West Palm Beach: 300.

    Google Scholar 

  • Staehr, P. A. & K. Sand-Jensen, 2007. Temporal dynamics and regulation of lake metabolism. Limnology and Oceanography 52: 108–120.

    Article  CAS  Google Scholar 

  • Staehr, P. A., K. Sand-Jensen, A. L. Raun, B. Nilsson & J. Kidmose, 2010. Drivers of metabolism and net heterotrophy in contrasting lakes. Limnology and Oceanography 55: 817–830.

    Article  CAS  Google Scholar 

  • Staehr, P. A., J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen & S. V. Smith, 2012. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74: 15–29.

    Article  Google Scholar 

  • Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), 1996. Algal Ecology: Freshwater Benthic Ecosystem. Academic, San Diego.

    Google Scholar 

  • Thébault, J., T. S. Schraga, J. E. Cloern & E. G. Dunlavey, 2008. Primary production and carrying capacity of former salt ponds after reconnection to San Francisco Bay. Wetlands 28: 841–851.

    Article  Google Scholar 

  • Trettin, C. C. & M. F. Jurgensen, 2002. Carbon cycling in wetland forest soils. In Kimble, J. M., R. Lal, R. A. Birdsey & L. S. Heath (eds), The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Tsai, J.-W., T. K. Kratz, P. C. Hanson, N. Kimura, W.-C. Liu, F.-P. Lin, H.-M. Chou, J.-T. Wu, C.-Y. Chiu & Y. Prairie, 2011. Metabolic changes and the resistance and resilience of a subtropical heterotrophic lake to typhoon disturbance. Canadian Journal of Fisheries and Aquatic Sciences 68: 768–780.

    Article  Google Scholar 

  • Tuttle, C. L., L. Zhang & W. J. Mitsch, 2008. Aquatic metabolism as an indicator of the ecological effects of hydrologic pulsing in flow-through wetlands. Ecological Indicators 8: 795–806.

    Article  Google Scholar 

  • UF-WBL, 2017. Evaluation of Soil Biogeochemical Properties Influencing Phosphorus Flux in the Everglades Stormwater Treatment Areas: 2016–2017 Annual Report. University of Florida, Gainesville.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vompersky, S. E., M. V. Smagina, A. I. Ivanov & T. V. Glukhova, 1992. The effect of forest drainage on the balance of organic matter in forest mires. In Peatland Ecosystems and Man: An Impact Assessment. British Ecological Society, International Peat Society, Department of Biological Sciences: 17–22.

  • Webster, J. R., 2007. Spiraling down the river continuum: stream ecology and the U-shaped curve. Journal of the North American Benthological Society 26: 375–389.

    Article  Google Scholar 

  • Yarwood, S. A., 2018. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fiy175/5087730.

    Article  PubMed  Google Scholar 

  • Zhao, H. & T. Piccone, 2018. Appendix 5C-6: Summary report for stormwater treatment area 2 flow-ways 1, 2, and 3 Water and total phosphorus budget analyses. South Florida Environmental Report. South Florida Water Management District, West Palm Beach [available on internet at https://apps.sfwmd.gov/sfwmd/SFER/2018_sfer_final/v1/appendices/v1_app5c-6.pdf]. Accessed 28 March 2021.

Download references

Acknowledgements

We would like to thank SFWMD and UF Wetland Biogeochemistry Laboratory staff members for providing the data used in this analysis. We would also like to thank Jill King, Cassondra Armstrong, Tom James, and the anonymous peer reviewer(s) and editor(s) for their efforts and constructive review of this manuscript.

Funding

Financial support for sample collection and analysis was provided by the South Florida Water Management District (Contract #4600003031).

Author information

Authors and Affiliations

Authors

Contributions

PJ performed data analyses including necessary calculations and statistical analyses and wrote the manuscript. TZO, RKB, and OV were involved with soil sample collection and writing of the manuscript.

Corresponding author

Correspondence to Paul Julian II.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: André Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julian, P., Osborne, T.Z., Bhomia, R.K. et al. Knowing your limits: evaluating aquatic metabolism in a subtropical treatment wetland. Hydrobiologia 848, 3969–3986 (2021). https://doi.org/10.1007/s10750-021-04617-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04617-7

Keywords

Navigation