Agaba, M. K., D. R. Tocher, X. Zheng, C. A. Dickson, J. R. Dick & A. J. Teale, 2005. Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish. Comparative Biochemistry and Physiology, Part B 142: 342–352.
Google Scholar
Ahlgren, G., P. Blomqvist, M. Boberg & I.-B. Gustafsson, 1994. Fatty acid content of the dorsal muscle—an indicator of fat quality in freshwater fish. Journal of Fish Biology 45: 131–157.
CAS
Google Scholar
Ahlgren, G., T. Vrede & W. Goedkoop, 2009. Fatty acid ratios in freshwater fish, zooplankton and zoobenthos—are there specific optima? In Arts, M. T., M. T. Brett & M. J. Kainz (eds), Lipids in Aquatic Ecosystems. Springer, New York: 147–178.
Google Scholar
Amlund, H., L. Andreasen & B. E. Torstensen, 2012. Dietary methylmercury and vegetable oil affects brain lipid composition in Atlantic salmon (Salmo salar L.). Food and Chemical Toxicology Elsevier Ltd 50: 518–525.
CAS
Google Scholar
Arts, M. T., M. T. Brett & M. J. Kainz, 2009. Lipids in aquatic ecosystems. Springer, New York.
Google Scholar
Ballantyne, A. P., M. T. Brett & D. E. Schindler, 2003. The importance of dietary phosphorus and highly unsaturated fatty acids for sockeye (Oncorhynchus nerka) growth in Lake Washington—a bioenergetics approach. Canadian Journal of Fisheries and Aquatic Sciences 60: 12–22.
CAS
Google Scholar
Bazan, N. G., 2005. Neuroprotectin D1 (NPD1): a DHA- derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathology (Zurich, Switzerland) 15: 159–166.
CAS
Google Scholar
Behnke, R. J., J. Tomelleri & D. S. Proebstel, 2002. Trout and Salmon of North America. Free Press, New York.
Google Scholar
Bell, M. V. & J. R. Dick, 1991. Molecular species composition of the major diacyl glycerophospholipids from muscle, liver, retina and brain of Cod (Gadus morhua). Lipids 26: 565–573.
CAS
Google Scholar
Bell, J. G. & J. R. Sargent, 2003. Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218: 491–499.
CAS
Google Scholar
Bell, M. V., R. S. Batty, J. R. Dick & K. Fretwell, 1995. Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile Herring (Clupea harengus L.). Lipids 30: 901–905.
Google Scholar
Bell, M. V., J. R. Dick & A. E. A. Porter, 2001. Biosynthesis and tissue deposition of docosahexaenoic acid (22:6n-3) in Rainbow Trout (Oncorhynchus mykiss). Lipids 36: 1153–1159.
CAS
PubMed
Google Scholar
Besemer, K., G. Singer, C. Quince, E. Bertuzzo, W. Sloan & T. J. Battin, 2013. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proceedings of the Royal Society B: Biological Sciences 280: 20131760.
PubMed
Google Scholar
Brett, M. & D. Müller-Navarra, 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology 38: 483–499.
CAS
Google Scholar
Brett, M. T., M. J. Kainz, S. J. Taipale & H. Seshan, 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proceedings of the National Academy of Sciences 106: 21197–21201.
CAS
Google Scholar
Brett, M. T., S. E. Bunn, S. Chandra, A. W. E. Galloway, F. Guo, M. J. Kainz, P. Kankaala, D. C. P. Lau, J. H. Thorp, J. D. Wehr, T. P. Moulton, M. E. Power, J. B. Rasmussen & S. J. Taipale, 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology 62: 833–853.
CAS
Google Scholar
Brodtkorb, T., G. Rosenlund & O. Lie, 1997. Effects of dietary levels of 20:5n-3 and 22:6n-3 on tissue lipid composition in juvenile atlantic salmon, Salmo salar, with emphasis on brain and eye. Aquaculture Nutrition 3: 175–187.
CAS
Google Scholar
Budge, S. M., S. J. Iverson & H. N. Koopman, 2006. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Marine Mammal Science 22: 759–801.
Google Scholar
Bunn, S. E., C. Leigh & T. D. Jardine, 2013. Diet–tissue fractionation of δ15N by consumers from streams and rivers. Limnology and Oceanography 58: 765–773.
CAS
Google Scholar
Buzzi, M., R. J. Henderson & J. R. Sargent, 1996. The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Biochimica et Biophysica Acta—Lipids and Lipid Metabolism 1299: 235–244.
Google Scholar
Chapman, M. G. & A. J. Underwood, 1999. Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests. Marine Ecology Progress Series 180: 257–265.
Google Scholar
De Roos, R., 1994. Plasma ketone, glucose, lactate, and alanine levels in the vascular supply to and from the brain of the spiny dogfish shark (Squalus acanthias). Journal of Experimental Zoology 268: 354–363.
Google Scholar
Elliott, J. M., 1973. The food of brown and rainbow trout (Salmo trutta and S. gairdneri) in relation to the abundance of drifting invertebrates in a mountain stream. Oecologia 12: 329–347.
CAS
PubMed
Google Scholar
Farkas, T., K. Kitajka, E. Fodor, I. Csengeri, E. Lahdes, Y. K. Yeo, Z. Krasznai & J. E. Halver, 2000. Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proceedings of the National Academy of Sciences 97: 6362–6366.
CAS
Google Scholar
Filzmoser, P., & M. Gschwandtner, 2018. R-Package: ‘mvoutlier’ - Multivariate Outlier Detection Based on Robust Methods.
Geurden, I., O. Reyes, P. Bergot, P. Coutteau & P. Sorgeloos, 1998. Incorporation of fatty acids from dietary neutral lipid in eye, brain and muscle of postlarval turbot fed diets with different types of phosphatidylcholine. Fish Physiology and Biochemistry 19: 365–375.
CAS
Google Scholar
Ghioni, C., J. G. Bell & J. R. Sargent, 1996. Polyunsaturated fatty acids in neutral lipids and phspholipids of some freshwater insects. Comparative Biochemistry and Physiology 114: 161–170.
Google Scholar
Gladyshev, M. I., N. N. Sushchick, A. P. Tolomeev & Y. Y. Dgebuadze, 2018. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Reviews in Fish Biology and Fisheries Springer International Publishing 28: 277–299.
Google Scholar
Goedkoop, W., M. Demandt & G. Ahlgren, 2007. Interactions between food quantity and quality (long-chain polyunsaturated fatty acid concentrations) effects on growth and development of Chironomus riparius. Canadian Journal of Fisheries and Aquatic Sciences 64: 425–436.
CAS
Google Scholar
Guo, F., M. J. Kainz, F. Sheldon & S. E. Bunn, 2015. Spatial variation in periphyton fatty acid composition in subtropical streams. Freshwater Biology 60: 1411–1422.
CAS
Google Scholar
Guo, F., M. J. Kainz, D. Valdez, F. Sheldon & S. E. Bunn, 2016. High-quality algae attached to leaf litter boost invertebrate shredder growth. Freshwater Science 35: 1213–1221.
Google Scholar
Guo, F., S. E. Bunn, M. T. Brett & M. J. Kainz, 2017. Polyunsaturated fatty acids in stream food webs—high dissimilarity among producers and consumers. Freshwater Biology 62: 1325–1334.
CAS
Google Scholar
Guo, F., S. E. Bunn, M. T. Brett, B. Fry, H. Hager, X. Ouyang & M. J. Kainz, 2018. Feeding strategies for the acquisition of high-quality food sources in stream macroinvertebrates: collecting, integrating, and mixed feeding. Limnology and Oceanography 63: 1964–1978.
PubMed
PubMed Central
Google Scholar
Guthrie, D. M., 1986. Role of vision in fish behaviour. In Pitcher, T. J. (ed.), Behaviour of Teleost Fishes. Springer, Boston, MA: 89–128.
Google Scholar
Hixson, S. M., B. Sharma, M. J. Kainz, A. Wacker & M. T. Arts, 2015. Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems. Environmental Reviews 424: 414–424.
Google Scholar
Hong, H., Y. Zhou, H. Wu, Y. Luo & H. Shen, 2014. Lipid content and fatty acid profile of muscle, brain and eyes of seven freshwater fish: a comparative study. Journal of the American Oil Chemists’ Society 91: 795–804.
CAS
Google Scholar
Ishizaki, Y., R. Masuda, K. Uematsu, K. Shimizu, M. Arimoto & T. Takeuchi, 2001. The effect of dietary docosahexaenoic acid on schooling behaviour and brain development in larval yellowtail. Journal of Fish Biology 58: 1691–1703.
CAS
Google Scholar
Iverson, S. J., 2009. Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In Arts, M. T., M. T. Brett & M. J. Kainz (eds), Lipids in Aquatic Ecosystems. Springer, New York: 281–307.
Google Scholar
Jaschinski, S., D. C. Brepohl & U. Sommer, 2011. Seasonal variation in carbon sources of mesograzers and small predators in an eelgrass community: stable isotope and fatty acid analyses. Marine Ecology Progress Series 431: 69–82.
Google Scholar
Kainz, M., M. T. Arts & A. Mazumder, 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnology and Oceanography 49: 1784–1793.
CAS
Google Scholar
Kainz, M. J., H. Hager, S. Rasconi, K. K. Kahilainen, P.-A. Amundsen & B. Hayden, 2017. Polyunsaturated fatty acids in fishes increase with total lipids irrespective of feeding sources and trophic position. Ecosphere 8: 13.
Google Scholar
Keva, O., R. Käkelä, P. Tang, B. Hayden, S. Taipale, C. Harrod & K. K. Kahilainen, 2019. Seasonal changes in European whitefish muscle and invertebrate prey fatty acid composition in a subarctic lake. Freshwater Biology 64: 1908–1920.
CAS
Google Scholar
Kühmayer, T., F. Guo, N. Ebm, T. J. Battin, M. T. Brett, S. E. Bunn, B. Fry & M. J. Kainz, 2020. Preferential retention of algal carbon in benthic invertebrates – stable isotopes and fatty acids evidence from an outdoor flume experiment. Freshwater Biology 65: 1200–1209.
PubMed
PubMed Central
Google Scholar
Lau, D. C. P., K. M. Y. Leung & D. Dudgeon, 2008. Experimental dietary manipulations for determining the relative importance of allochthonous and autochthonous food resources in tropical streams. Freshwater Biology 53: 139–147.
CAS
Google Scholar
Lau, D. C. P., K. M. Y. Leung & D. Dudgeon, 2009. Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society 28: 426–439.
Google Scholar
Linares, F. & R. J. Henderson, 1991. Incorporation of 14C-labelled polyunsaturated fatty acids by juvenile turbot, Scophthalmus maximus (L.) in vivo. Journal of Fish Biology 38: 335–347.
CAS
Google Scholar
Lund, I., E. Höglund, L. O. E. Ebbesson & P. V. Skov, 2014. Dietary LC-PUFA deficiency early in ontogeny induces behavioural changes in pike perch (Sander lucioperca) larvae and fry. Aquaculture 432: 453–461.
CAS
Google Scholar
Martin, R. E., E. B. Rodriguez de Turco & N. G. Bazan, 1994. Developmental maturation of hepatic n-3 polyunsaturated fatty acid metabolism: supply of docosahexaenoic acid to retina and brain. The Journal of Nutritional Biochemistry 5: 151–160.
CAS
Google Scholar
Masclaux, H., A. Bec, M. J. Kainz, F. Perrière, C. Desvilettes & G. Bourdier, 2012. Accumulation of polyunsaturated fatty acids by cladocerans: effects of taxonomy, temperature and food. Freshwater Biology 57: 696–703.
CAS
Google Scholar
Mills, C. A. & R. H. K. Mann, 1983. The Bullhead Cottus gobio, a versatile and successful fish. Annnual Report of the Freshwater Biological Association 51: 76–88.
Google Scholar
Mohd-Yusof, N. Y., O. Monroig, A. Mohd-Adnan, K.-I. Wan & D. R. Tocher, 2010. Investigation of highly unsaturated fatty acid metabolism in the Asian sea bass, Lates calcarifer. Fish Physiology and Biochemestry 36: 827–843.
CAS
Google Scholar
Mourente, G. & D. Tocher, 1998. The in vivo incorporation and metabolism of [1-14C] linolenate (18:3n-3) in liver, brain and eyes of juveniles of rainbow trout Oncorhynchus mykiss L and gilthead sea bream Sparus aurata L. Fish Physiology and Biochemistry 18: 149–165.
CAS
Google Scholar
Mourente, G., D. R. Tocher & J. R. Sargent, 1991. Specific accumulation of docosahexaenoic acid (22: 6n − 3) in brain lipids during development of juvenile turbot Scophthalmus maximus L. Lipids 26: 871–877.
CAS
Google Scholar
Müller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.
PubMed
Google Scholar
Murray, D. S., H. Hager, D. R. Tocher & M. J. Kainz, 2014. Effect of partial replacement of dietary fish meal and oil by pumpkin kernel cake and rapeseed oil on fatty acid composition and metabolism in Arctic charr (Salvelinus alpinus). Aquaculture 431: 85–91.
CAS
Google Scholar
Nakano, S. & M. Murakami, 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America 98: 166–170.
CAS
PubMed
PubMed Central
Google Scholar
Napier, J. A., 2006. The production of n-3 long-chain polyunsaturated fatty acids in transgenic plants. European Journal of Lipid Science and Technology 108: 965–972.
CAS
Google Scholar
Navarro, J. C., L. A. McEvoy, M. V. Bell, F. Amat, F. Hontoria & J. R. Sargent, 1997. Effect of different dietary levels of docosahexaenoic acid (DHA, 22:6ω-3) on the DHA composition of lipid classes in sea bass larvae eyes. Aquaculture International 5: 509–516.
Google Scholar
Nogueira, N., I. Fernandes, T. Fernandes & N. Cordeiro, 2017. A comparative analysis of lipid content and fatty acid composition in muscle, liver and gonads of Seriola fasciata Bloch 1793 based on gender and maturation stage. Journal of Food Composition and Analysis 59: 68–73.
CAS
Google Scholar
Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. Mcglinn, P. R. Minchin, R., B. Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, & E. Szoecs, 2019. R Package “vegan”. https://github.com/vegandevs/vegan.
Ripley, B., 2019. R-Package “tree”. https://CRAN.R-project.org/package=tree.
Sargent, J. R., J. G. Bell, M. V. Bell, R. J. Henderson & D. R. Tocher, 1995. Requirement criteria for essential fatty acids. Journal of Applied Ichthyology 11: 183–198.
CAS
Google Scholar
Soengas, J. L. & M. Aldegunde, 2002. Energy metabolism of fish brain. Comparative Biochemistry and Physiology—Part B Biochemistry and Molecular Biology 131(3): 271–296.
Google Scholar
Stacey, N. E. & F. W. Goetz, 1982. Role of prostaglandins in fish reproduction. Canadian Journal of Fisheries and Aquatic Sciences 39: 92–98.
CAS
Google Scholar
Stoknes, I. S., H. M. W. Økland, E. Falch & M. Synnes, 2004. Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranchs. Comparative Biochemistry and Physiology—Part B Biochemistry and Molecular Biology 138: 183–191.
Google Scholar
Sushchik, N. N., I. V. Zuev, G. S. Kalachova, A. V. Ageev & M. I. Gladyshev, 2018. Content of highly unsaturated fatty acids in fish from rivers of contrasting temperature. River Research and Applications 34: 565–574.
Google Scholar
Sushchik, N. N., O. N. Makhutova, A. E. Rudchenko, L. A. Glushchenko, S. P. Shulepina, A. A. Kolmakova & M. I. Gladyshev, 2020. Comparison of fatty acid contents in major lipid classes of seven salmonid species from Siberian Arctic Lakes. Biomolecules 10: 1–20.
Google Scholar
Thorp, J. H. & R. E. Bowes, 2017. Carbon sources in riverine food webs: new evidence from amino acid isotope techniques. Ecosystems 20: 1029–1041.
CAS
Google Scholar
Tocher, D. R., 1993. Elongation predominates over desaturation in the metabolism of 18:3n-3 and 20:5n-3 in Turbot (Scophthalmus maximus) brain astroglial cells in primary culture. Lipids 28: 267–272.
CAS
PubMed
Google Scholar
Tocher, D. R. & D. G. Harvie, 1988. Fatty acid compositions of the major phosphoglycerides from fish neural tissues; (n-3) and (n-6) polyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadus morhua) brains and retinas. Fish Physiology and Biochemistry 5: 229–239.
CAS
PubMed
Google Scholar
Tocher, D. R., J. G. Bell, P. MacGlaughlin, F. McGhee & J. R. Dick, 2001. Hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition of liver in salmonids: effects of dietary vegetable oil. Comparative Biochemistry and Physiology—B Biochemistry and Molecular Biology 130: 257–270.
CAS
Google Scholar
Tocher, D. R., X. Zheng, C. Schlechtriem, N. Hastings, J. R. Dick & A. J. Teale, 2006. Highly unsaturated fatty acid synthesis in marine fish: cloning, functional characterization, and nutritional regulation of fatty acyl Δ6 desaturase of atlantic cod (Gadus morhua L.). Lipids 41: 1003–1016.
CAS
PubMed
Google Scholar
Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. Journal of the North American Benthological Society University of Chicago Press 26: 509–522.
Google Scholar
Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2010. Are net-spinning caddisflies what they eat? An investigation using controlled diets and fatty acids. Journal of the North American Benthological Society 29: 803–813.
Google Scholar
Twining, C. W., J. T. Brenna, P. Lawrence, J. R. Shipley, T. N. Tollefson & D. W. Winkler, 2016. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity. Proceedings of the National Academy of Sciences of the United States of America 113: 10920–10925.
CAS
PubMed
PubMed Central
Google Scholar
Volk, C. & P. Kiffney, 2012. Comparison of fatty acids and elemental nutrients in periphyton, invertebrates, and cutthroat trout (Oncorhynchus clarki) in conifer and alder streams of western Washington state. Aquatic Ecology 46: 85–99.
CAS
Google Scholar
Wagner, H. J., 1990. Retinal structure of fishes. In Douglas, R. & M. Djamgoz (eds), The Visual System of Fish. Springer, Dordrecht: 109–157.
Google Scholar