Skip to main content

Advertisement

Log in

Relationships between vegetation cover (Schoenoplectus decipiens) and wetland macroinvertebrate assemblages in a semi-arid landscape (Eastern Cape Karoo, South Africa)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study investigated macroinvertebrate assemblage composition in relation to the cover of aquatic macrophytes (Schoenoplectus decipiens) for a set of 13 temporary depressional wetlands occurring within a semi-arid environment (Eastern Cape Karoo, South Africa). We hypothesised that invertebrate abundance and taxonomic richness would be higher in wetlands containing aquatic macrophytes than in those lacking them. It was expected that a positive relationship between vegetation cover categories (sparse, moderate and extensive) and invertebrate richness and abundance would be observed. In contrast to expectations, the macroinvertebrate assemblage was not significantly different across the three investigated categories. Non-parametric permutational MANOVA results indicated that the presence/absence of vegetation and wetland surface area had a significant effect on macroinvertebrate assemblage composition. Multivariate regressions (distance-based redundancy analysis) indicated that surface area, dissolved inorganic nitrogen and pelagic chlorophyll a concentration explained significant variation in macroinvertebrate assemblage composition in these wetlands. Overall, the presence or absence of vegetation appears to play a role in structuring the macroinvertebrate assemblages, but no convincing evidence was found for an effect of the vegetation cover gradient (sparse vs moderate vs extensive) on macroinvertebrate assemblages in these temporary wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Allanson, B. R., R. C. Hart, J. H. O’keeffe & R. D. Robarts, 1990. Inland Waters of Southern Africa: An Ecological Perspective. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.

    Google Scholar 

  • Appleton, C.C. 2002. Mollusca. In Day, J. A. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 6: Arachnida and Mollusca - Araneae, Watermites and Mollusca, Water Research Commission Report TT 182/02: 42–125.

  • Bagella, S., S. Gascón, M. C. Caria, J. Sala, M. A. Mariani & D. Boix, 2010. Identifying key environmental factors related to plant and crustacean assemblages in Mediterranean temporary ponds. Biodiversity and Conservation 19: 1749–1768.

    Google Scholar 

  • Barber-James, H.M. & C.R. Lugo-Ortiz, 2003. Ephemeroptera. In de Moor, I. J., J. A. Day & F. C. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 7: Insecta I - Ephemeroptera, Odonata and Plecoptera, Water Research Commission Report TT 207/03: 16–159.

  • Batzer, D., 2013. The seemingly intractable ecological responses of invertebrates in North American wetlands: a review. Wetlands 33: 1–15.

    Google Scholar 

  • Batzer, D. & D. Boix (eds), 2016. Invertebrates in Freshwater Wetlands: An International Perspective on their Ecology. Springer International Publishing, Switzerland.

    Google Scholar 

  • Batzer, D. P. & S. A. Wissinger, 1996. Ecology of insect communities in nontidal wetlands. Annual Review of Entomology 41: 75–100.

    CAS  PubMed  Google Scholar 

  • Batzer, D. P., B. J. Palik & R. Buech, 2004. Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. Journal of the North American Benthological Society 23: 50–68.

    Google Scholar 

  • Beckett, D. C., T. P. Aartila & A. C. Miller, 1992. Contrasts in density of benthic invertebrates between macrophyte beds and open littoral patches in Eau-Galle Lake, Wisconsin. American Midland Naturalist 127: 77–90.

    Google Scholar 

  • Bird, M. S. & J. A. Day, 2016. Impacts of terrestrial habitat transformation on temporary wetland invertebrates in a sclerophyllous sand fynbos landscape. Hydrobiologia 782: 169–185.

    CAS  Google Scholar 

  • Bird, M. S., J. A. Day & H. L. Malan, 2014. The influence of biotope on invertebrate assemblages in lentic environments: a study of two perennial alkaline wetlands in the Western Cape, South Africa. Limnologica-Ecology and Management of Inland Waters 48: 16–27.

    Google Scholar 

  • Bloechl, A., S. Koenemann, B. Philippi & A. Melber, 2010. Abundance, diversity and succession of aquatic Coleoptera and Heteroptera in a cluster of artificial ponds in the north German Lowlands. Limnologica 40: 215–225.

    Google Scholar 

  • Bratton, J. H., 1990. Seasonal pools: an overlooked invertebrate habitat. British Wildlife 2: 22–29.

    Google Scholar 

  • Brendonck, L., 1999. Conchostraca. In Day, J.A., Stewart, B.A., de Moor, I.J. & A. E. Louw (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 2: Crustacea I - Notostraca, Anostraca, Conchostraca and Cladocera, Water Research Commission Report TT 121/00: 59–80

  • Calhoun, A. J. K., D. M. Mushet, K. P. Bell, D. Boix, J. A. Fitzsimons & F. Isselin-Nondedeu, 2017. Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biological Conservation 211: 3–11.

    Google Scholar 

  • Caraco, N. F. & J. J. Cole, 2002. Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecological Applications 12(5): 1496–1509.

    Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Google Scholar 

  • Céréghino, R., J. Biggs, B. Oertli & S. Declerck, 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.

    Google Scholar 

  • Coetzee, M., 2003. Culicidae. In Day, J. A., A. D. Harrison & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Invertebrates of Southern Africa. Volume 9: Diptera, Water Research Commission Report TT 201/02:57–74.

  • Collen, B., F. Whitton, E. E. Dyer, J. E. M. Baillie, N. Cumberlidge, W. R. T. Darwall, C. Pollock, N. I. Richman, A.-M. Soulsby & M. Böhm, 2014. Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51.

    PubMed  Google Scholar 

  • Collinson, N. H., J. Biggs, A. Corfield, M. J. Hodson, D. Walker, M. Whitfield & P. J. Williams, 1995. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biological Conservation 74: 125–133.

    Google Scholar 

  • Connor, E. F. & E. D. McCoy, 1979. The statistics and biology of the species–area relationship. The American Naturalist 113: 791–833.

    Google Scholar 

  • Cottenie, K., N. Nuytten, E. Michels & L. De Meester, 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442: 339–350.

    Google Scholar 

  • Cottenie, K., E. Michels, N. Nuytten & L. De Meester, 2003. Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84: 991–1000.

    Google Scholar 

  • Day, J. H. & J. A. Day, 2002. Oligochaeta. In Day, J. A. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 5: Non-Arthropods - The Protozoans, Porifera, Cnidaria, Platyhelminthes, Nemertea, Rotifera, Nematoda, Nematomorpha, Gastrotrichia, Bryozoa, Tardigrada, Polychaeta, Oligochaeta and Hirudinea, Water Research Commission Report TT 167/02: 203–236.

  • Darwall, W. R. T., K. G. Smith, D. J. Allen, R. A. Holland, I. J. Harrison & E. G. E. Brooks (eds), 2011. The diversity of life in African freshwaters: under water, under threat. An analysis of the status and distribution of freshwater species throughout mainland Africa. IUCN, Cambridge, United Kingdom and Gland, Switzerland.

  • de Meillon, B. & W. W. Wirth, 2003. Ceratopogonidae. In Day, J. A., A. D. Harrison & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 9: Diptera, Water Research Commission Report TT 201/02: 50–56.

  • Dippennaar-Schoeman, A. S. 2002. Araneae. In Day, J. A. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 6: Arachnida and Mollusca - Araneae, Watermites and Mollusca, Water Research Commission Report TT 182/02: 5–22.

  • de Necker, L., M. Ferreira, J. H. J. van Vuren & W. Malherbe, 2016. Aquatic invertebrate community structure of selected endorheic wetlands (pans) in South Africa. Inland Waters 6: 303–313.

    Google Scholar 

  • Della Bella, V., M. Bazanti & F. Chiarotti, 2005. Macroinvertebtrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 583–600.

    Google Scholar 

  • Desmet, P. G. & R. M. Cowling, 1999. The climate of the Karoo – a functional approach. In Dean, W. R. J. & S. J. Milton (eds), The Karoo Ecological Patterns and Processes. Cambridge University Press, Cambridge: 3–16.

    Google Scholar 

  • Díaz-Valenzuela, J., R. Barva-Alvarez, A. Merlo-Galiazzi & L. Zambrano, 2016. Macrophytes and metaphyton as habitats for insects in temporary and permanent tropical aquatic ecosystems. Neotropical Biodiversity 2: 171–180.

    Google Scholar 

  • Downing, J. A., 1991. The effect of habitat structure on the spatial distribution of freshwater invertebrate populations. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Population and Community Biology Series. Chapman and Hall, London: 87–106.

    Google Scholar 

  • Endrody-Younga, S., 2007. Hydrophilidae. In Stals, R. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 10: Coleoptera Water Research Commission Report TT 320/07: 101–112.

  • Endrody-Younga, S. & R. Stals, 2007a. Dytiscidae. In Stals, R. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 10: Coleoptera Water Research Commission Report TT 320/07: 69–84.

  • Endrody-Younga, S. & R. Stals, 2007a. Dytiscidae. In Stals, R. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 10: Coleoptera Water Research Commission Report TT 320/07: 69–84.

  • Endrody-Younga, S. & R. Stals, 2007b. Spercheidae. In Stals, R. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 10: Coleoptera Water Research Commission Report TT 320/07: 97–100.

  • Estlander, S., L. Nurminen, M. Olin, M. Vinni & J. Horppila, 2009. Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia 620: 109–120.

    Google Scholar 

  • Gee, G. W. & J. W. Bauder, 1986. Particle-size analysis. In Klute, A. (ed), Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods vol Agronomy Monograph No. 9, second edn. American Society of Agronomy/Soil Science Society of America, Madison WI, Madison.

  • Gregg, W. W. & F. L. Rose, 1985. Influences of aquatic macrophytes on invertebrate community structure, guild structure, and microdistribution in streams. Hydrobiologia 128: 45–56.

    Google Scholar 

  • Grobbelaar, E., 2007. Curculionidae. In Stals, R. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 10: Coleoptera Water Research Comission Report TT 320/07: 183–192.

  • Hamer, M., 1999. Anostraca. In Day, J.A., Stewart, B.A., de Moor, I.J. & A. E. Louw (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 2: Crustacea I - Notostraca, Anostraca, Conchostraca and Cladocera, Water Research Commission Report TT 121/00: 14–58.

  • Hansen, J. P., S. A. Wikström, H. Axemar & L. Kautsky, 2011. Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquatic Ecology 45: 11–22.

    CAS  Google Scholar 

  • Harrison, A. D., 2003. Chironomidae. In Day, J. A., A. D. Harrison & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 9: Diptera, Water Research Commission Report TT 201/02: 110–158.

  • Harrison, A. D., Prins, A. & J. A. Day, 2003. Lesser-known Nematocera. In Day, J. A., A. D. Harrison & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 9: Diptera, Water Research Commission Report TT 201/02: 26–49.

  • Heino, J., 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418: 229–242.

    Google Scholar 

  • Higler, L. W. G. & P. F. M. Verdonschot, 1989. Macroinvertebrates in the Demmerik ditches (The Netherlands): the role of environment structure. Hydrobiological Bulletin 23: 143–150.

    Google Scholar 

  • Jansen van Rensburg, C.A. & J.A. Day, 2002. Watermites. In Day, J. A. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 6: Arachnida and Mollusca - Araneae, Watermites and Mollusca, Water Research Commission Report TT 182/02: 23–41.

  • Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. Perrow, 1998. Impact of submerged macrophytes on fish–zooplankton interactions in lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York: 91–114.

    Google Scholar 

  • Kiflawi, M., A. Eitam & L. Blaustein, 2003. The relative impact of local and regional processes on macro-invertebrate species richness in temporary pools. Journal of Animal Ecology 72: 447–452.

    Google Scholar 

  • Larios, M. C., C. N. da Cunha, J. Penha, V. L. Landeiro, J. B. Pinho, M. Aragona, L. M. Valerio, C. Strussmann, M. I. Marques, L. S. Lourenco, T. F. Chupel & I. M. Fernandes, 2017. Evidence of cross-taxon congruence in Neotropical wetlands: importance of environmental and spatial factors. Global Ecology and Conservation 12: 108–118.

    Google Scholar 

  • Lemke, A. M. & A. C. Benke, 2009. Spatial and temporal patterns of microcrustacean assemblage structure and secondary production in a wetland ecosystem. Freshwater Biology 54: 1406–1426.

    Google Scholar 

  • Lougheed, V. L., B. Crosbie & P. Chow-Fraser, 1998. Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and submergent macrophytes in a Great Lakes wetland. Canadian Journal of Fisheries and Aquatic Sciences 55(5): 1189–1197.

    Google Scholar 

  • Mabidi, A., M. S. Bird & R. Perissinotto, 2017a. Assessment of the physicochemical characteristics of surface waterbodies in a region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa). Marine and Freshwater Research 68: 1626–1641.

    CAS  Google Scholar 

  • Mabidi, A., M. S. Bird & R. Perissinotto, 2017b. Distribution and diversity of aquatic macroinvertebrate assemblages in a semi-arid region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa). PLoS One 12: e0178559.

    PubMed  PubMed Central  Google Scholar 

  • Mabidi, A., M. S. Bird, R. Perissinotto & D. C. Rogers, 2016. Ecology and distribution of large branchiopods (Crustacea, Branchiopoda, Anostraca, Notostraca, Laevicaudata, Spinicaudata) of the Eastern Cape Karoo, South Africa. ZooKeys 618: 15–38.

    Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Google Scholar 

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.

    Google Scholar 

  • Martens, K., 2001. Ostracoda. In Day, J. A., I. J. de Moor, B. A. Stewart & A. E. Louw (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 3: Crustacea II - Ostracoda, Copepoda and Branchiura, Water Research Commission Report TT 148/01: 9–77.

  • Meadows, M. E. & J. K. Watkeys, 1999. Paleoenvironments. In Dean, W. R. J. & S. J. Milton (eds), The Karoo Ecological Patterns and Processes. Cambridge University Press, Cambridge: 27–41.

    Google Scholar 

  • Mhlanga, L. & N. Siziba, 2006. The association between invertebrates and macrophytes in a tropical reservoir, Lake Kariba, Zimbabwe; a preliminary survey. African Journal of Aquatic Science 31: 271–274.

    Google Scholar 

  • Middleton, N. & D. S. G. Thomas (eds), 1992. World Atlas of Desertification (United Nations Environment Programme). John Wiley & Sons Ltd, London.

    Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200: 367–377.

    Google Scholar 

  • Mucina, L., M. C. Rutherford, S. J. Milton, L. Scott, W. J. Lloyd, B. van de Merwe, D. B. Hoare, H. Bezuidenhout, J. H. K. Vlok, D. I. W. Euston-Brown, L. W. Powrie & A. P. Dold, 2006. Nama-Karoo biome. In Mucina, L. & M. C. Rutherford (eds), The Vegetation of South Africa, Lesotho and Swaziland Strelitzia. South African National Biodiversity Institute, Pretoria: 324–347.

    Google Scholar 

  • Murray, R., K. Swana, J. Miller, S. Talma, G. Tredoux, A. Vengosh & T. Darrah, 2015. The use of chemistry, isotopes and gases as indicators of deeper circulating groundwater in the Main Karoo Basin. WRC Report No. 2254/1/15 Water Research Commission, Pretoria.

  • Nhiwatiwa, T., L. Brendonck, A. Waterkyn & B. Vanschoenwinkel, 2011. The importance of habitat and landscape properties in explaining instantaneous and long-term distributions of large branchiopods in subtropical temporary pans. Freshwater Biology 56: 1992–2008.

    Google Scholar 

  • Nicolet, P., J. Biggs, G. Fox, M. J. Hodson, C. Reynolds, M. Whitfield & P. Williams, 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biological Conservation 120: 265–282.

    Google Scholar 

  • Oertli, B., D. A. Joye, E. Castella, R. Juge, D. Cambin & J. B. Lachavanne, 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59–70.

    Google Scholar 

  • Ollis, D., J. Ewart-Smith, J. Day, N. Job, D. Macfarlane, C. Snaddon, E. Sieben, J. Dini & N. Mbona, 2015. The development of a classification system for inland aquatic ecosystems in South Africa. Water SA 41: 727–745.

    Google Scholar 

  • Olson, E. J., E. S. Engstrom, M. R. Doeringsfeld & R. Bellig, 1995. Abundance and distribution of macroinvertebrates in relation to macrophyte communities in a prairie marsh, Swan Lake. Minnesota. Journal of Freshwater Ecology 10: 325.

    Google Scholar 

  • Peticrew, E. L. & J. Kalff, 1992. Water flow and clay retention in submerged macrophyte beds. Canadian Journal of Fisheries and Aquatic Sciences 49: 2483–2489.

    Google Scholar 

  • Rayner, N. 1999. Notostraca. In Day, J.A., Stewart, B.A., de Moor, I.J. & A. E. Louw (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 2: Crustacea I - Notostraca, Anostraca, Conchostraca and Cladocera, Water Research Commission Report TT 121/00: 7–13.

  • Rayner, N., 2001. Copepoda. In Day, J. A., I. J. de Moor, B. A. Stewart & A. E. Louw (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 3: Crustacea II - Ostracoda, Copepoda and Branchiura, Water Research Commission Report TT 148/01: 78–123.

  • Rayner, N. A., Appleton, C. C. & N. A. H. Millard, 2002. Platyhelminthes. In Day, J. A. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 5: Non-Arthropods - The Protozoans, Porifera, Cnidaria, Platyhelminthes, Nemertea, Rotifera, Nematoda, Nematomorpha, Gastrotrichia, Bryozoa, Tardigrada, Polychaeta, Oligochaeta and Hirudinea, Water Research Commission Report TT 167/02: 88–110.

  • Reavell, P. A., 2003. Hemiptera. In de Moor, I. J., J. A. Day & F. C. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 8: Insecta II - Hemiptera, Megaloptera, Neuroptera, Trichoptera and Lepidoptera, Water Research Commission Report TT 214/03, Pretoria. 16–71.

  • Riato, L., C. Van Ginkel & J. C. Taylor, 2014. Zooplankton and diatoms of temporary and permanent freshwater pans in the Mpumalanga Highveld region, South Africa. African Zoology 49: 113–127.

    Google Scholar 

  • Ruggiero, A., R. Céréghino, J. Figuerola, P. Marty & S. Angélibert, 2008. Farm ponds make a contribution to the biodiversity of aquatic insects in a French agricultural landscape. Comptes Rendus Biologies 331: 298–308.

    PubMed  Google Scholar 

  • Samways, M. J. & B. C.Wilmot, 2003. Odonata. In de Moor, I. J., J. A. Day & F. C. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 7: Insecta I - Ephemeroptera, Odonata and Plecoptera, Water Research Commission Report TT 207/03: 160–212.

  • Scheffer, M., A. A. Achterberg & B. Beltman, 1984. Distribution of macro-invertebrates in a ditch in relation to the vegetation. Freshwater Biology 14: 367–370.

    Google Scholar 

  • Schulze, R. E., M. Maharaj, S. D. Lynch, B. J. Howe & M. Melvil-Thomson, 1997. South African Atlas of Agrohydrology and Climatology. WRC Report No. TT82/96. Water Research Commission, Pretoria.

  • Schuyler, A. E., 1984. Classification of life forms and growth forms of aquatic macrophytes. Bartonia 50: 8–11.

    Google Scholar 

  • Seaman, M.T., Kok, D.J. & M. Watson, 1999. Cladocera. In Day, J.A., Stewart, B.A., de Moor, I.J. & A. E. Louw (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 2: Crustacea I - Notostraca, Anostraca, Conchostraca and Cladocera, Water Research Commission Report TT 121/00: 81–110.

  • Spencer, M. S., L. Blaustein, S. S. Schwartz & J. E. Cohen, 1999. Species richness and the proportion of predatory animal species in temporary freshwater pools: relationships with habitat size and permanence. Ecology Letters 2: 157–166.

    Google Scholar 

  • Stals, R. & S. Endrody-Younga, 2007. Helophoridae. In Stals, R. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 10: Coleoptera Water Research Commission Report TT 320/07: 113–116.

  • Stevens, D. M. & M. D. Picker, 2003. Plecoptera. In de Moor, I. J., J. A. Day & F. C. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 7: Insecta I - Ephemeroptera, Odonata and Plecoptera, Water Research Commission Report TT 207/03: 213–263.

  • Studinski, J. M. & S. A. Grubbs, 2007. Environmental factors affecting the distribution of aquatic invertebrates in temporary ponds in Mammoth Cave National Park, Kentucky, USA. Hydrobiologia 575: 211–220.

    Google Scholar 

  • Tessier, C., A. Cattaneo, B. Pinel-Alloul, G. Galanti & G. Morabito, 2004. Biomass, composition and size structure of invertebrate communities associated to different types of aquatic vegetation during summer in Lago di Candia (Italy). Journal of Limnology 63: 190–198.

    Google Scholar 

  • Todd, S. W., M. T. Hoffman, J. R. Henschel, A. W. Cardoso, M. Brooks & L. G. Underhill, 2016. The potential impacts of fracking on biodiversity of the Karoo Basin, South Africa. In Glazeweski, J. & S. Esterhuyse (eds), Hydraulic Fracturing in the Karoo: Critical Legal and Environmental Perspectives. Juta & Company (Pty) Ltd., Cape Town: 278–301.

    Google Scholar 

  • Tucker, A. R. & G. van Tonder, 2015. The Karoo fracking debate: a Christian contribution to the world communities of faith. Science and Engineering Ethics 21: 631–653.

    PubMed  Google Scholar 

  • Van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulmans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.

    Google Scholar 

  • van Hoven, W. & J. A. Day, 2002. Hirudinea. In Day, J. A. & I. J. de Moor (eds), Guides to the Freshwater Invertebrates of Southern Africa. Volume 5: Non-Arthropods - The Protozoans, Porifera, Cnidaria, Playhelminthes, Nemertea, Rotifera, Nematoda, Nematomorpha, Gastrotrichia, Bryozoa, Tardigrada, Polychaeta, Oligochaeta and Hirudinea, Water Research Commission Report TT 167/02: 237–263.

  • Verdonschot, R. C. M., K. Didderen & P. F. M. Verdonschot, 2012. Importance of habitat structure as a determinant of the composition of lentic macroinvertebrate assemblages. Limnologica 42: 31–42.

    Google Scholar 

  • Vieira, A. C. B., L. L. Ribeiro, D. P. N. Santos & M. C. Crispim, 2009. Correlation between the zooplanktonic community and environmental variables in a reservoir from the Northeastern semi-arid. Acta Limnologica Brasiliensia 21: 349–358.

    Google Scholar 

  • Walker, P. D., S. Wijnhoven & G. van der Velde, 2013. Macrophyte presence and growth form influence macroinvertebrate community structure. Aquatic Botany 104: 80–87.

    Google Scholar 

  • Warfe, D. M. & L. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.

    PubMed  Google Scholar 

  • Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.

    CAS  Google Scholar 

  • Waterkeyn, A., P. Grillas, M. Anton-Pardo, B. Vanschoenwinkel & L. Brendonck, 2011. Can large branchiopods shape zooplankton communities in Mediterranean temporary wetlands? Marine and Freshwater Research 62: 46–53.

    CAS  Google Scholar 

  • Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, New York.

    Google Scholar 

  • Williams, P. J., J. Biggs, G. Fox, P. Nicolet & M. Whitfield, 2001. History, origins and importance of temporary ponds. Freshwater Forum 17: 7–15.

    Google Scholar 

  • Zedler, P. H., 2003. Vernal pools and the concept of “isolated wetlands”. Wetlands 23: 597–607.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Eastern Cape Department of Economic Affairs, Environmental Affairs and Tourism (Cacadu Region), South African National Parks and AGRI Eastern Cape for granting permits and supporting this research project. We thank the various farmers involved for granting permission to work on their property. Special thanks go to Bradley Ah Yui, Carla Dodd, Daniel Lemley, Jacqueline Raw, Liza Rishworth, Natasha Roussouw, Michael Larsen, Mfundo Mpinga, Nasreen Peer, Nelson Miranda and Nuette Gordon for their assistance during field trips and laboratory analysis of samples. We are grateful for the assistance of the following taxonomic experts with organism identification: Helen Barber-James, Ephemeroptera; Christopher Rogers, large branchiopods; David Bilton, Coleoptera; Patrick Reavell, Hemiptera; Nancy Rayner, Copepoda. A. Mabidi was funded by a PhD grant from the South African Research Chairs Initiative, administered by the National Research Foundation (NRF), as well as a grant from the Africa Earth Observatory Network (AEON) at Nelson Mandela University. M. Bird received a DST/NRF Scarce-Skills Postdoctoral Fellowship. R. Perissinotto’s Professorship was funded by the DST/NRF South African Research Chairs Initiative. Any findings and conclusion expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annah Mabidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Dani Boix

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 kb)

Supplementary material 2 (XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabidi, A., Bird, M.S. & Perissinotto, R. Relationships between vegetation cover (Schoenoplectus decipiens) and wetland macroinvertebrate assemblages in a semi-arid landscape (Eastern Cape Karoo, South Africa). Hydrobiologia 847, 2049–2064 (2020). https://doi.org/10.1007/s10750-020-04230-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04230-0

Keywords

Navigation