Skip to main content

Advertisement

Log in

Influence of Macrophyte Complexity and Environmental Variables on Macroinvertebrate Assemblages Across a Subtropical Wetland System

  • Wetland Ecology
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Different architectures in aquatic plants with different levels of morphological complexity provide environmental heterogeneity in freshwater ecosystems, and consequently influence invertebrate assemblages. We investigated the relative importance of the structural complexity of macrophytes and environmental variables on the abundance and richness of the macroinvertebrate assemblages associated with aquatic plants across the Esteros del Iberá. This protected wetland system located in Corrientes (Argentina) is fed by rain. Macrophyte habitat complexity was quantified by measuring fractal geometry dimensions of area and perimeter and plant biomass. We sampled macroinvertebrates associated with five species of macrophyte (Egeria najas, Cabomba caroliniana, Potamogeton gayi, Eichhornia azurea and Salvinia biloba) in five shallow lakes during two different seasons (dry and rainy) between 2007 and 2008. Regression analyses revealed that macrophyte structural complexity was an important factor on macroinvertebrate assemblages, whereas explanatory power of environmental variables was low. In both seasons, the fractal dimension of area was the variable with the highest explanatory power on richness, and plant biomass was in the case of macroinvertebrate abundance. To conserve macroinvertebrate diversity in Esteros del Iberá, it would be necessary to maintain the natural heterogeneity indicated by the different structural complexities of the macrophytes across the wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data will be available at CONICET repository after acceptation of the manuscript.

Code Availability

Not applicable.

References

  • Angrisano EB (1992) El orden Trichoptera en la Argentina y países limítrofes. Physis 50:118–119

    Google Scholar 

  • APHA (1975) Standard methods for the examination of water and wastewater. APHA (American public health association), Washington D.C.

  • APHA (1995) Standard methods for the examination of water and wastewater. APHA (American public health association), Washington D.C.

  • Batzer DP, Wissinger SA (1996) Ecology of insect communities in nontidal wetlands. Annual Review of Entomology. https://doi.org/10.1146/annurev.en.41.010196.000451

  • Batzer DP, Palik BJ, Buech R (2004) Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. Journal of the North American Benthological Society 23(1):50–68

    Article  Google Scholar 

  • Beck MW (2000) Separating the elements of habitat structure: independent effects of habitat complexity and structural components on rocky intertidal gastropods. Journal of Experimental Marine Biology and Ecology. https://doi.org/10.1016/s0022-0981(00)00171-4

  • Bolduc P, Bertolo A, Pinel-Alloul B (2016) Does submerged aquatic vegetation shape zooplankton community structure and functional diversity? A test with a shallow fluvial lake system. Hydrobiologia. https://doi.org/10.1007/s10750-016-2663-4

  • Clarke DA, York PH, Rasheed MA, Northfield TD (2017) Does biodiversity-ecosystem function literature neglect tropical ecosystems? Trends in Ecology & Evolution. https://doi.org/10.1016/j.tree.2017.02.012

  • Cózar A, García CM, Gálvez JA, Loiselle SA, Bracchini L, Cognetta A (2005) Remote sensing imagery analysis of the lacustrine system of Iberá wetland (Argentina). Ecological Modelling. https://doi.org/10.1016/j.ecolmodel.2005.01.029

  • Cyr H, Downing JA (1988) Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Canadian Journal of Fisheries and Aquatic Sciences 45:976–984

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CV (2018) InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

  • Dibble ED, Thomaz SM (2009) Use of fractal dimension to assess habitat complexity and its influence on dominant invertebrates inhabiting tropical and temperate macrophytes. Journal of Freshwater Ecology. https://doi.org/10.1080/02705060.2009.9664269

  • Dibble ED, Killgore KJ, Dick GO (1996) Measurement of plant architecture in seven aquatic plants. Journal of Freshwater Ecology. https://doi.org/10.1080/02705060.1996.9664453

  • Dibble ED, Thomaz SM, Padial AA (2006) Spatial complexity measured at a multi-scale in three aquatic plant species. Journal of Freshwater Ecology. https://doi.org/10.1080/02705060.2006.9664992

  • Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos. Sistemática y Biología. Fundación Miguel Lillio, San Miguel de Tucumán

  • Downes BJ, Lake PS, Schreiber ESG, Glaister A (1998) Habitat structure and regulation of local species diversity in a stony upland stream. Ecological Monographs. https://doi.org/10.1890/0012-9615(1998)068[0237:HSAROL]2.0.CO;2

  • Downing JA, Cyr H (1985) Quantitative estimation of epiphytic invertebrate populations. Canadian Journal of Fisheries and Aquatic Sciences. https://doi.org/10.1139/f85-197

  • Ferreiro N, Feijoó C, Giorgi A, Leggieri L (2011) Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia. https://doi.org/10.1007/s10750-010-0599-7

  • Gallardo LI, Carnevali RP, Porcel EA, Poi ASG (2017) Does the effect of aquatic plant types on invertebrate assemblages change across seasons in a subtropical wetland? Limnetica. https://doi.org/10.23818/limn.36.07

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis, Palaeontologia electronica. http://palaeo-electronica.org

  • Jacobsen D, Cressa C, Mathooko JM, Dudgeon D (2008) Macroinvertebrates: composition, life histories and production. In: Dudgeon D (ed) Tropical streams ecology. Elsevier, Amsterdam, pp 65–105

    Chapter  Google Scholar 

  • Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia. https://doi.org/10.1007/s10750-011-0974-z

  • Kratzer EB, Batzer DP (2007) Spatial and temporal variation in aquatic macroinvertebrates in the Okefenokee swamp, Georgia, USA. Wetlands. https://doi.org/10.1672/0277-5212(2007)27[127:SATVIA]2.0.CO;2

  • Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters. https://doi.org/10.1111/ele.12141

  • Libonatti ML, Michat MC, Torres PLM (2011) Key to the subfamilies, tribes and genera of adult Dytiscidae of Argentina (Coleoptera: Adephaga). Revista de la Sociedad Entomológica Argentina 70:317–336

    Google Scholar 

  • Lopretto EC, Tell G (1995) Ecosistemas de aguas continentales. Metodología para su estudio. Ediciones Sur, La Plata

  • Magurran AE (2004) Measuring biological diversity. Blackell Publishing, Oxford

    Google Scholar 

  • McAbendroth L, Ramsay PM, Foggo A, Rundle SD, Bilton DT (2005) Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos. https://doi.org/10.1111/j.0030-1299.2005.13804.x

  • Meerhoff M, Mazzeo N, Moss B, Rodríguez-Gallego L (2003) The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology. https://doi.org/10.1023/B:AECO.0000007041.57843.0b

  • Michat MC, Archangelsky M, Bachmann AO (2008) Generic keys for the identification of larval Dytiscidae from Argentina (Coleoptera: Adephaga). Revista de la Sociedad Entomológica Argentina 67:17–36

    Google Scholar 

  • Monção F, Medeiros dos Santos A, Bini LM (2012) Aquatic macrophyte traits and habitat utilization in the upper Paraná River. Aquatic Botany. https://doi.org/10.1016/j.aquabot.2012.04.008

  • Mormul RP, Thomaz SM, Takeda AM, Behrend RD (2011) Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica. https://doi.org/10.1111/j.1744-7429.2011.00762.x

  • Neiff JJ, Casco SL, Cózar A, Poi de Neiff A, Ubeda B (2011) Vegetation diversity in a large Neotropical wetland during two different climatic scenarios. Biodiversity and Conservation. https://doi.org/10.1007/s10531-011-0071-7

  • Poi de Neiff A, Carignan R (1997) Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paraná River floodplain. Hydrobiologia. https://doi.org/10.1023/A:1002949528887

  • Poi de Neiff A, Neiff JJ (2006) Riqueza de especies y similaridad de los invertebrados que viven en plantas flotantes de la planicie de inundación del río Paraná. Interciencia 3:220–225

    Google Scholar 

  • Poi ASG, Neiff JJ, Casco SL, Úbeda B, Cózar A (2017) El agua de los esteros, lagunas y ríos. In: Poi A (comp) Biodiversidad en las aguas del Iberá. EUDENE, Corrientes, pp 21–39

    Google Scholar 

  • Ramírez A (2010) Odonata. Revista de Biología Tropical 58:97–136

    Google Scholar 

  • Rasband WS (1997-2015) ImageJ 1.49v. U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/

  • St. Pierre JI, Kovalenko KE (2014) Effect of habitat complexity attributes on species richness. Ecosphere. https://doi.org/10.1890/ES13-00323.1

  • Sugihara G, May RM (1990) Applications of fractals in ecology. Trends in Ecology & Evolution. https://doi.org/10.1016/0169-5347(90)90235-6

  • Tessier C, Cattaneo A, Pinel-alloul P, Galanti G, Morabito G (2004) Biomass, composition and size structure of invertebrate communities associated to different types of aquatic vegetation during summer in Lago di Candia (Italy). Journal of Limnology. https://doi.org/10.4081/jlimnol.2004.190

  • Thomaz SM, Dibble ED, Evangelista LR, Higuti J, Bini LM (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology. https://doi.org/10.1111/j.1365-2427.2007.01898.x

  • Trivinho-Strixino S, Strixino G (1995) Larvas de Chironomidae (Diptera) do estado de São Paulo: guia de identifiçacao e diagnose dos géneros. Universidade Federal de São Carlos, São Carlos

    Google Scholar 

  • Úbeda B, Di Giacomo AS, Neiff JJ, Loiselle SA, Poi ASG, Gálvez JA, Casco SL, Cózar A (2013) Potential effects of climate change on the water level, flora and macro-fauna of a large neotropical wetland. PLoS One. https://doi.org/10.1371/journal.pone.0067787

  • USEPA (2002) Methods for evaluating wetland conditions: #9 developing and invertebrate index of biological integrity for wetlands. USEPA (United States Environmental Protection Agency), Washington, DC

  • Vieira LCG, Bini LM, Velho FM, Mazãro GR (2007) Influence of spatial complexity on the density and diversity of periphytic rotifers, microcrustaceans and testate amoebae. Fundamental and Applied Limnology. https://doi.org/10.1127/1863-9135/2007/0170-0077

  • Walker PD, Wijnhoven S, van der Velde G (2013) Macrophyte presence and growth form influence macroinvertebrate community structure. Aquatic Botany. https://doi.org/10.1016/j.aquabot.2012.09.003

  • Warfe DM, Barmuta LA, Wotherspoon S (2008) Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos. https://doi.org/10.1111/j.1600-0706.2008.16836.x

Download references

Acknowledgments

We are grateful to Juan José Neiff for his valuable critical review. Since the creation of the provincial reserve Iberá, many specialists collaborated with the systematic identification of invertebrates A. Bachmann (in memorian), M. Archangelsky, Ch. O’Brien, O. Flint (in memorian), W. Peters, E. Domínguez, ME, Varela, A. Paggi, C. Armúa, P. Collins, whom we thank for their work and for sending the reference material. We also thanks to staff and park rangers to “Reserva del Iberá” for their valuable support during the surveys and C. Giese for your statistic support.

We thank to the associated editor, one anonymous reviewer and K. Kovalenko for their constructive suggestions.

Funding

This study was funded by the BBVA Foundation Bilbao under projects IBERAQUA (ref. BIOCON 04-100/05) and PI 18Q004 (Secretaría General de Ciencia y Técnica, Universidad Nacional del Nordeste).

Author information

Authors and Affiliations

Authors

Contributions

A.S.G. Poi, S.L. Casco and B. Úbeda participated equally in the conception or design of this study, as well as in the acquisition, analysis and interpretation of the data. L.I. Gallardo and L.M. Sabater contributed substantially to invertebrate identification and statistical processing.

Corresponding author

Correspondence to Sylvina L. Casco.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poi, A.S.G., Gallardo, L.I., Casco, S.L. et al. Influence of Macrophyte Complexity and Environmental Variables on Macroinvertebrate Assemblages Across a Subtropical Wetland System. Wetlands 41, 105 (2021). https://doi.org/10.1007/s13157-021-01508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-021-01508-4

Keywords

Navigation