Skip to main content

Advertisement

Log in

Establishing the relationship between benthic macroinvertebrates and water level fluctuation in subtropical shallow wetlands

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wetland water level fluctuations often influence benthic macroinvertebrate communities through changes in water quality, substrate, and macrophytes and, hence, affect the structure and function of aquatic ecosystems. However, there is lack of understanding on how water level fluctuations affect the structure and composition of benthic macroinvertebrates in subtropical shallow wetlands in Nepal. Here, we assessed the changes in benthic macroinvertebrate community composition in response to water level fluctuations and identified indicator taxa sensitive to such fluctuations. A study was conducted over 4 seasons covering one annual cycle of water level fluctuation in 4 wetlands of Koshi Tappu Wildlife Reserve, Nepal. The study revealed that benthic macroinvertebrate composition significantly differed across water levels. Dissimilarities in macroinvertebrate community composition were mainly attributed by families Atyidae, Dytiscidae, Baetidae, Planorbidae, Chironomidae, Bithyniidae, Sphaeriidae, and Thiaridae. Taxon specific richness, densities, and biomass varied across the water levels while no difference was documented for overall family richness, density, and biomass. Ephemeroptera and Trichoptera richness decreased when water levels were low while Coleoptera and Diptera richness increased. Medium water level supported high benthic macroinvertebrate diversity. Indicator taxa analysis identified Coleoptera: Hydrophilidae and Dytiscidae, Hemiptera: Pleidae, Diptera: Muscidae and Mollusca: Sphaeriidae, Viviparidae, and Thiaridae, as indicators of low water level. Similarly, Coleoptera: Scirtidae, Hemiptera: Micronectidae and Oligochaeta: Tubificidae as indicators of medium water level, and Trichoptera: Polycentropodidae and Ephemeroptera: Caenidae as indicators of high water level. Redundancy analysis identified water level as one of the most influencing factors in benthic macroinvertebrate community variation. Considering the significant response of benthic macroinvertebrates to water level fluctuations, they are important as ecological indicators in research aimed at developing environmental flow frameworks. Indicator species are likely to be a vital tool in environmental impact assessment and monitoring in relation to hydrological development. The outcomes of this research have important implications to conservation and management of wetlands to preserve the valuable ecosystem functions provided by wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References 

  • Adler, P. H., & Courtney, G. W. (2019). Ecological and societal services of aquatic Diptera. Insects, 10(3), 70. https://doi.org/10.3390/insects10030070

    Article  Google Scholar 

  • Amakye, J. S. (2001). Some observations on macro-invertebrate benthos of Lake Volta at Yeji Area (stratum VII) thirty years after impoundment. West African Journal of Applied Ecology2(1), 91-102. https://doi.org/10.4314/wajae.v2i1.45565

  • APHA. (2017). Standard methods for the examination of water and wastewater, 23rd Edition. American Public Health Association, Washington, DC.

  • Aroviita, J., & Hämäläinen, H. (2008). The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. In K. M. Wantzen, K.-O. Rothhaupt, M. Mörtl, M. Cantonati, L. G.-Tóth & P. Fischer (Eds.), Ecological effects of water-level fluctuations in lakes. (pp. 45–56). Developments in Hydrobiology, vol 204. Springer. https://doi.org/10.1007/s10750-008-9471-4.

  • Baumgärtner, D., Mörtl, M., & Rothhaupt, K. -O. (2008). Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of Lake Constance. In K. M. Wantzen, K.-O. Rothhaupt, M. Mörtl, M. Cantonati, L. G.-Tóth & P. Fischer (Eds.), Ecological effects of water-level fluctuations in lakes. (pp. 97–107). Developments in Hydrobiology, vol 204. Springer. https://doi.org/10.1007/s10750-008-9475-0

  • Benson, N. G., & Hudson, P. L. (1975). Effects of a reduced fall drawdown on benthos abundance in Lake Francis Case. Transactions of the American Fisheries Society, 104(3), 526–528. https://doi.org/10.1577/1548-8659(1975)104526:EOARFD2.0.CO;2

  • Bogan, M. T., & Lytle, D. A. (2007). Seasonal flow variation allows ‘time-sharing’by disparate aquatic insect communities in montane desert streams. Freshwater Biology, 52(2), 290–304. https://doi.org/10.1111/j.1365-2427.2006.01691.x

    Article  Google Scholar 

  • Bonada, N., Rieradevall, M., & Prat, N. (2007). Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia, 589(1), 91–106. https://doi.org/10.1007/s10750-007-0723-5

    Article  Google Scholar 

  • Borcard, D., Gillet, F., & Legendre, P. (2018). Canonical ordination. In Numerical ecology with R (pp. 203–297). Springer. https://doi.org/10.1007/978-3-319-71404-2_6.

  • Bouchard, R. W., Ferrington, L. C., & Karius, M. L. (2004). Guide to aquatic invertebrates of the Upper Midwest. University of Minnesota.

  • Brooks, R. T. (2000). Annual and seasonal variation and the effects of hydroperiod on benthic macroinvertebrates of seasonal forest (“vernal”) ponds in central Massachusetts, USA. Wetlands, 20(4), 707-715. https://doi.org/10.1672/0277-5212(2000)020[0707:AASVAT]2.0.CO;2

    Article  Google Scholar 

  • Brooks, S. S., & Boulton, A. J. (1991). Recolonization dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream. Marine and Freshwater Research, 42(3), 295–308. https://doi.org/10.1071/MF9910295

    Article  Google Scholar 

  • Brown, J. H., & Lomolino, M. V. (1998). Biogeography, 2nd edn. Sinauer Assoc. Inc., Sunderland, MA, USA. Journal of Mammalogy, 80(4), 1385–1389. https://doi.org/10.2307/1383194

  • Cao, Y., Larsen, D. P., & Thorne, R. S. -J. (2001). Rare species in multivariate analysis for bioassessment: Some considerations. Journal of the North American Benthological Society, 20(1), 144–153. https://doi.org/10.2307/1468195

    Article  Google Scholar 

  • Cardinale, B. J., Palmer, M. A., & Collins, S. L. (2002). Species diversity enhances ecosystem functioning through interspecific facilitation. Nature, 415(6870), 426-429. https://doi.org/10.1038/415426a

    Article  CAS  Google Scholar 

  • Carmignani, J. R., & Roy, A. H. (2017). Ecological impacts of winter water level drawdowns on lake littoral zones: A review. Aquatic Sciences, 79(4), 803–824. https://doi.org/10.1007/s00027-017-0549-9

    Article  Google Scholar 

  • Clarke, K., & Gorley, R. (2006). “Primer v6.” user manual/tutorial. PRIMER-E.

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • da Silva, A. L. L., & Petrucio, M. M. (2018). Relationships between aquatic invertebrate communities, water-level fluctuations and different habitats in a subtropical lake. Environmental Monitoring and Assessment, 190(9), 548. https://doi.org/10.1007/s10661-018-6929-3

    Article  CAS  Google Scholar 

  • Dalu, T., Clegg, B., & Nhiwatiwa, T. (2012). Macroinvertebrate communities associated with littoral zone habitats and the influence of environmental factors in Malilangwe Reservoir, Zimbabwe. Knowledge and Management of Aquatic Ecosystems, 406, 06. https://doi.org/10.1051/kmae/2012023

    Article  Google Scholar 

  • Davies, P. M., Naiman, R. J., Warfe, D. M., Pettit, N. E., Arthington, A. H., & Bunn, S. E. (2014). Flow–ecology relationships: Closing the loop on effective environmental flows. Marine and Freshwater Research, 65(2), 133–141. https://doi.org/10.1071/MF13110

    Article  Google Scholar 

  • Doody, T. M., Cuddy, S. M., & Bhatta, L. D. (2016). Connecting flow and ecology in Nepal: Current state of knowledge for the Koshi Basin. Sustainable Development Investment Portfolio (SDIP) Project. CSIRO, Australia, 1–194.

  • Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Article  Google Scholar 

  • Evtimova, V. V., & Donohue, I. (2014). Quantifying ecological responses to amplified water level fluctuations in standing waters: An experimental approach. Journal of Applied Ecology, 51(5), 1282–1291. https://doi.org/10.1111/1365-2664.12297

    Article  Google Scholar 

  • Feminella, J. W. (1996). Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. Journal of the North American Benthological Society, 15(4), 651–669. https://doi.org/10.2307/1467814

    Article  Google Scholar 

  • Furey, P. C., Nordin, R. N., & Mazumder, A. (2006). Littoral benthic macroinvertebrates under contrasting drawdown in a reservoir and a natural lake. Journal of the North American Benthological Society, 25(1), 19–31. https://doi.org/10.1899/0887-3593(2006)25[19:LBMUCD]2.0.CO;2

    Article  Google Scholar 

  • Gownaris, N. J., Rountos, K. J., Kaufman, L., Kolding, J., Lwiza, K. M. M., & Pikitch, E. K. (2018). Water level fluctuations and the ecosystem functioning of lakes. Journal of Great Lakes Research, 44(6), 1154–1163. https://doi.org/10.1016/j.jglr.2018.08.005

    Article  Google Scholar 

  • Heatherly, T., Whiles, M. R., Knuth, D., & Garvey, J. E. (2005). Diversity and community structure of littoral zone macroinvertebrates in southern Illinois reclaimed surface mine lakes. The American Midland Naturalist, 154(1), 67–77. https://doi.org/10.1674/0003-0031(2005)154[0067:DACSOL]2.0.CO;2

    Article  Google Scholar 

  • Hodkinson, I. D., & Jackson, J. K. (2005). Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management, 35(5), 649–666. https://doi.org/10.1007/s00267-004-0211-x

    Article  Google Scholar 

  • Hofmann, H., Lorke, A., & Peeters, F. (2008). Temporal scales of water-level fluctuations in lakes and their ecological implications. In K. M. Wantzen, K.-O. Rothhaupt, M. Mörtl, M. Cantonati, L. G.-Tóth & P. Fischer (Eds.), Ecological effects of water-level fluctuations in lakes. Developments in Hydrobiology, 204. (pp. 85–96). Springer. https://doi.org/10.1007/978-1-4020-9192-6_9

  • Hunt, P. C., & Jones, J. W. (1972). The effect of water level fluctuations on a littoral fauna. Journal of Fish Biology, 4(3), 385–394. https://doi.org/10.1111/j.1095-8649.1972.tb05687.x

  • Jäch, M. A., & Balke, M. (2008). Global diversity of water beetles (Coleoptera) in freshwater. Hydrobiologia, 595(1), 419–442. https://doi.org/10.1007/s10750-007-9117-y

    Article  Google Scholar 

  • Jackson, J. K., & Sweeney, B. W. (1995). Research in tropical streams and rivers: Introduction to a series of papers. Journal of the North American Benthological Society, 14(1), 2–4. https://doi.org/10.2307/1467719

    Article  Google Scholar 

  • Johst, K., & Huth, A. (2005). Testing the intermediate disturbance hypothesis: When will there be two peaks of diversity? Diversity and Distributions, 11(1), 111–120. https://doi.org/10.1111/j.1366-9516.2005.00133.x

    Article  Google Scholar 

  • Jooste, M. L., Samways, M. J., & Deacon, C. (2020). Fluctuating pond water levels and aquatic insect persistence in a drought-prone Mediterranean-type climate. Hydrobiologia, 847(5), 1315–1326. https://doi.org/10.1007/s10750-020-04186-1

    Article  Google Scholar 

  • Koenig, R., & Santos, S. (2013). Chironomidae (Insecta: Diptera) of different habitats and microhabitats of the Vacacaí-Mirim River microbasin, Southern Brazil. Anais Da Academia Brasileira De Ciências, 85(3), 975–985. https://doi.org/10.1590/S0001-37652013000300010

    Article  Google Scholar 

  • KTWR. (2018). Koshi Tappu wildlife reserve and its buffer zone management plan (2074/75–2078/79). Koshi Tappu Wildlife Reserve Office, Paschim Kushaha, Sunsari, Nepal.

  • Leira, M., & Cantonati, M. (2008). Effects of water-level fluctuations on lakes: An annotated bibliography. In Ecological effects of water-level fluctuations in lakes (pp. 171–184). Springer. https://doi.org/10.1007/978-1-4020-9192-6_16

  • Logez, M., Roy, R., Tissot, L., & Argillier, C. (2016). Effects of water-level fluctuations on the environmental characteristics and fish-environment relationships in the littoral zone of a reservoir. Fundamental and Applied Limnology/archiv Für Hydrobiologie, 189(1), 37–49. https://doi.org/10.1127/fal/2016/0963

    Article  Google Scholar 

  • Lytle, D. A. (2015). Order Hemiptera. In J.H. Thorp & D.C. Rogers (Eds.), Ecology and general biology:Thorp and Covich’s freshwater invertebrates. (4th ed., pp. 951–963). Elsevier. https://doi.org/10.1016/B978-0-12-385026-3.00037-1

  • Mackay, R. J. (1992). Colonization by lotic macroinvertebrates: A review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences, 49(3), 617–628. https://doi.org/10.1139/f92-071

    Article  Google Scholar 

  • Mandaville, S. M. (2002). Benthic macroinvertebrates in freshwaters: Taxa tolerance values, metrics, and protocols. Citeseer.

  • McCullough, J. D., & Jackson, D. W. (1985). Composition and productivity of the benthic macroinvertebrate community of a subtropical reservoir. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 70(2), 221–235.https://doi.org/10.1002/iroh.19850700206

  • McEwen, D. C., & Butler, M. G. (2010). The effects of water-level manipulation on the benthic invertebrates of a managed reservoir. Freshwater Biology, 55(5), 1086–1101. https://doi.org/10.1111/j.1365-2427.2009.02382.x

    Article  Google Scholar 

  • Merritt, R. W., & Cummins, K. W. (1996). An introduction to the aquatic insects of North America. Kendall Hunt.

  • Mesa, L. M. (2012). Interannual and seasonal variability of macroinvertebrates in monsoonal climate streams. Brazilian Archives of Biology and Technology, 55(3), 403–410. https://doi.org/10.1590/S1516-89132012000300011

    Article  Google Scholar 

  • Miler, O., Porst, G., McGoff, E., Pilotto, F., Donohue, L., Jurca, T., Solimini, A., Sandin, L., Irvine, K., Aroviita, J., Clarke, R., & Pusch, M.T. (2013). Morphological alterations of lake shores in Europe: A multimetric ecological assessment approach using benthic macroinvertebrates. Ecological Indicators, 34, 398–410. https://doi.org/10.1016/j.ecolind.2013.06.002

    Article  Google Scholar 

  • Nair, M. V. (2011). Dragonflies and damselflies of Orissa and Eastern India. Wildlife Organisation, Forest & Environment Department, Government of Orissa.

  • Nesemann, H., Sharma, S., Sharma, G., Khanal, S.N., Pradhan, B., Shah, D.N., & Tachamo, R.D. (2007). Aquatic invertebrates of the Ganga River system: Mollusca, Annelida, Crustacea (in part). H. Nesemann.

  • Nesemann, H., Shah, R. D. T., & Shah, D. N. (2011). Key to the larval stages of common Odonata of Hindu Kush Himalaya, with short notes on habitats and ecology. Journal of Threatened Taxa, 3(9), 2045–2060. https://doi.org/10.11609/JoTT.o2759.2045-60

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., & Solymos, P. (2015). Vegan: Community ecology package. R Package Version, 2.2-1, 2015.

    Google Scholar 

  • Oscoz, J., Galicia, D., & Miranda, R. (Eds.). (2011). Identification guide of freshwater macroinvertebrates of Spain. Springer. https://doi.org/10.1007/978-94-007-1554-7

    Article  Google Scholar 

  • Pal, M., Samal, N. R., Roy, P. K., & Roy, M. B. (2015). Electrical conductivity of lake water as environmental monitoring – a case study of Rudrasagar Lake. IOSR Journal of Environmental Science, Toxicology and Food Technology, 9(3), 66-71. https://doi.org/10.9790/2402-09316671

  • Ramírez, A., & Gutiérrez-Fonseca, P. E. (2014). Functional feeding groups of aquatic insect families in Latin America: A critical analysis and review of existing literature. Revista De Biología Tropical, 62, 155–167.

    Article  Google Scholar 

  • Ramsar Convention. (1971). The Ramsar convention. Ramsar Center, Rue Mauverney 28, CH 1196, Gland, Switzerland.

  • Regmi, T., Shah, D. N., Doody, T. M., Cuddy, S., & Shah, R. D. T. (2021). Hydrological alteration induced changes on macrophyte community composition in sub-tropical floodplain wetlands of Nepal. Aquatic Botany, 173(103413). https://doi.org/10.1016/j.aquabot.2021.103413

  • Shah, D. N., Shah, R. D. T., & Pradhan, B. K. (2011). Diversity and community assemblage of littoral zone benthic macroinvertebrates in Jagadishpur Reservoir. Nepal Journal of Science and Technology, 12, 211–219. https://doi.org/10.3126/njst.v12i0.6505

    Article  Google Scholar 

  • Shah, R. D. T., Sharma, S., & Bharati, L. (2020). Water diversion induced changes in aquatic biodiversity in monsoon-dominated rivers of Western Himalayas in Nepal: Implications for environmental flows. Ecological Indicators, 108, 105735. https://doi.org/10.1016/j.ecolind.2019.105735

    Article  CAS  Google Scholar 

  • Singh, H., Parkash, B., & Gohain, K. (1993). Facies analysis of the Kosi megafan deposits. Sedimentary Geology, 85(1–4), 87–113. https://doi.org/10.1016/0037-0738(93)90077-I

    Article  Google Scholar 

  • Spitale, D., Angeli, N., Lencioni, V., Tolotti, M., & Cantonati, M. (2015). Comparison between natural and impacted Alpine lakes six years after hydropower exploitation has ceased. Biologia, 70(12), 1597–1605. https://doi.org/10.1515/biolog-2015-0185

    Article  Google Scholar 

  • Stein, E. D., Mazor, R. D., Sengupta, A., McCune, K., Bledsoe, B., Adams, S., Eberhart, S., Pyne, M., Ode, P., & Rehn, A. (2017). Development of recommended flow targets to support biological integrity based on regional flow-ecology relationships for benthic macroinvertebrates in southern California streams (SCCWRP Technical Report 974). Southern California Coastal Watershed Research Project, Santa Ana, CA.

  • Subramanian, K. A., & Sivaramakrishnan, K. G. (2007). Aquatic insects of India-A field guide (pp. 62). Ashoka Trust for Ecology and Environment (ATREE), Bangalore, India.

    Google Scholar 

  • Sun, G., & Vose, J. M. (2016). Forest management challenges for sustaining water resources in the Anthropocene. Forests, 7(3), 68. https://doi.org/10.3390/f7030068

    Article  Google Scholar 

  • Sundermann, A., Lohse, S., Beck, L. A., & Haase, P. (2007). Key to the larval stages of aquatic true flies (Diptera), based on the operational taxa list for running waters in Germany. Annales De Limnologie-International Journal of Limnology, 43(1), 61–74. https://doi.org/10.1051/limn/2007028

    Article  Google Scholar 

  • Tan, C., Sheng, T.,  Wang, L.,  Mbao, E.,  Gao, J.,  Wang, B. (2021). Water-level fluctuations affect the alpha and beta diversity of macroinvertebrates in Poyang Lake China. Fundamental and Applied Limnology, 194(4), 321–334. https://doi.org/10.1127/fal/2020/1297

  • Ter Braak, C.J.F, & Smilauer, P. (1998). CANOCO reference manual and user’s guide to Canoco for Windows: Software for canonical community ordination (version 4). Centre for Biometry.

  • Thompson, R. M.,  Townsend, C. R. (1999). The effect of seasonal variation on the community structure and food-web attributes of two streams: Implications for food-web science. Oikos, 87(1), 75–88. https://doi.org/10.2307/3546998

  • Trivedi, P. K., & Goel, P. K. (1986). Chemical and biological methods for water pollution studies. Publication, Karad.

    Google Scholar 

  • Tzilkowski, C. J., & Stauffer Jr, J. R. (2011). Common nymphs of Eastern North America: a primer for flyfishers and flytiers. Penn State Press.

  • Valdovinos, C., Moya, C., Olmos, V., Parra, O., Karrasch, B., & Buettner, O. (2007). The importance of water-level fluctuation for the conservation of shallow water benthic macroinvertebrates: An example in the Andean zone of Chile. Biodiversity and Conservation, 16(11), 3095–3109. https://doi.org/10.1007/s10531-007-9165-7

    Article  Google Scholar 

  • Waikagul, J., & Thaekham, U. (2014). Approaches to research on the systematics of fish-borne Trematodes. Academic Press.

    Google Scholar 

  • Weerakoon, S. N., Chandrasekara, W. U., & Amarasinghe, U. S. (2021). Seasonal water-level fluctuations and changes in macro-benthic community structure in tropical reservoirs: A Sri Lankan case study. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 26(2), e12358. https://doi.org/10.1111/lre.12358

    Article  Google Scholar 

  • White, D. S. (2009). Coleoptera (Beetles) in aquatic ecosystems (pp. 144–156). Murray State University, USA. Elsevier. https://doi.org/10.1016/B978-012370626-3.00160-5

  • White, M. S., Xenopoulos, M. A., Hogsden, K., Metcalfe, R. A., & Dillon, P. J. (2008). Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lakes region. In In K. M. Wantzen, K.-O. Rothhaupt, M. Mörtl, M. Cantonati, L. G.-Tóth & P. Fischer (Eds.), Ecological Effects of Water-Level Fluctuations in Lakes (pp. 21–31). Springer. https://doi.org/10.1007/978-1-4020-9192-6_4

  • White, M. S., Xenopoulos, M. A., Metcalfe, R. A., & Somers, K. M. (2010). On the role of natural water level fluctuation in structuring littoral benthic macroinvertebrate community composition in lakes. Limnology and Oceanography, 55(6), 2275–2284. https://doi.org/10.4319/lo.2010.55.6.2275

    Article  Google Scholar 

  • White, M. S., Xenopoulos, M. A., Metcalfe, R. A., & Somers, K. M. (2011). Water level thresholds of benthic macroinvertebrate richness, structure, and function of boreal lake stony littoral habitats. Canadian Journal of Fisheries and Aquatic Sciences, 68(10), 1695–1704. https://doi.org/10.1139/f2011-094

    Article  Google Scholar 

  • Whitmore, M. M., Murphy, C. A., Johnson, B., Arismendi, I., & Johnson, S. L. (2017). Littoral benthic macroinvertebrate response to water-level fluctuations in three reservoirs of the Willamette River Basin, Oregon. River Research and Applications, 33(7), 1052–1059. https://doi.org/10.1002/rra.3150

    Article  Google Scholar 

  • Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences, 96(4), 1463–1468. https://doi.org/10.1073/pnas.96.4.1463

    Article  CAS  Google Scholar 

  • Yan, S., Wang, X., Zhang, Y., Liu, D., Yi, Y., Li, C., Liu, Q., & Yang, Z. (2020). A hybrid PCA-GAM model for investigating the spatiotemporal impacts of water level fluctuations on the diversity of benthic macroinvertebrates in Baiyangdian Lake, North China. Ecological Indicators, 116, 106459. https://doi.org/10.1016/j.ecolind.2020.106459

    Article  Google Scholar 

  • Yee, D. A., & Kehl, S. (2015). Order Coleoptera. In J.H. Thorp & D.C. Rogers (Eds.), Ecology and general biology:Thorp and Covich’s freshwater invertebrates. (4th ed., pp. 1003–1042). Elsevier. https://doi.org/10.1016/B978-0-12-385026-3.00039-5

  • Zerlin, R. A., & Henry, R. (2014). Does water level affect benthic macro-invertebrates of a marginal lake in a tropical river-reservoir transition zone? Brazilian Journal of Biology, 74(2), 408–419. https://doi.org/10.1590/1519-6984.26812

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Central Department of Environmental Science, Tribhuvan University for providing the laboratory facilities. We thank Mr. Kul Bahadur Thapa, Ms. Tika Regmi, and Mr. Aditya Pal for assisting in the field. We thank all colleagues for assisting in my laboratory work.

Funding

This research was financially supported by the Australian government through its national science agency CSIRO-Commonwealth Scientific and Industrial Research Organisation and facilitated by Himalayan Nature, Nepal.

Author information

Authors and Affiliations

Authors

Contributions

Sunita Shrestha: field and laboratory work — data collection, curation, analysis; writing — original draft preparation, editing. Deep Narayan Shah: conceptualization, supervision, data analysis, writing — original draft, review, editing, and finalization. Ram Devi Tachamo-Shah: conceptualization, supervision, benthic macroinvertebrates identification, data analysis, writing — review and editing. Tanya Doody: conceptualization, project facilitation, writing — review and editing. Susan Cuddy: project facilitation, review and editing.

Corresponding author

Correspondence to Deep Narayan Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, S., Tachamo-Shah, R.D., Doody, T. et al. Establishing the relationship between benthic macroinvertebrates and water level fluctuation in subtropical shallow wetlands. Environ Monit Assess 193, 534 (2021). https://doi.org/10.1007/s10661-021-09225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09225-5

Keywords

Navigation