Skip to main content
Log in

Maternal origins induced plasticity in salt adaptability of Avicennia officinalis L. seedlings in the Sundarbans of Bangladesh

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The influences of maternal origins on plasticity of salt adaptability of Avicennia officinalis seedlings in the Sundarbans of Bangladesh were studied through use of a randomized block design. This study assayed different growth parameters, proline content, osmotic potential, and nutrients accumulation in different parts of A. officinalis seedlings of different maternal origins grown under different salinity regimes. Survival, chlorophyll, growth parameters, phenolic compounds, proline content, osmotic potential, nutrients (N, P, and K) and Na concentration in the roots, stems, bark, and leaves of A. officinalis seedlings originating from medium and high saline zones were higher at high salinities than those originating from low saline zone. Because of the previous exposure to high saline conditions during propagule maturation stage, seedlings of A. officinalis originating from medium and high saline zones adapted to greater salinity and thereby maintained satisfactory growth performance under high saline conditions than those from low saline zone. Thus, different maternal origins of A. officinalis brought about plasticity in salt adaptability which enabled this species to grow in a wide range of saline environments in the Sundarbans. This scientific knowledge will be useful for coastal afforestation and conservation of A. officinalis under increasing saline environments due to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alam, M. R., H. Mahmood, M. M. Rahman, T. Biswas, S. Nasrin & M. S. T. L. R. Khushi, 2017. Ecological status and environmental protective role of Avicennia officinalis in the vulnerable coastal regions of Bangladesh: an overview. The Indian Forester 143(9): 817–822.

    Google Scholar 

  • Alam, M. R., H. Mahmood, M. L. R. Khushi & M. M. Rahman, 2018. Adaptive phenotypic plasticity of Avicennia officinalis L. across the salinity gradient in the Sundarbans of Bangladesh. Hydrobiologia 808(1): 163–174.

    Article  Google Scholar 

  • Allen, S. E., 1974. Chemical Analysis of Ecological Materials. Blackwell Scientific Publication, Oxford.

    Google Scholar 

  • Arnon, D. I., 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. Plant Physiology 24: 1–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aziz, I. & A. Khan, 2001. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquatic Botany 20: 259–268.

    Article  Google Scholar 

  • Baethgen, W. E. & M. M. Alley, 1989. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Communications in Soil Science and Plant Analysis 20(9 & 10): 961–969.

    Article  CAS  Google Scholar 

  • Bangladesh Bureau of Statistics, 2017. Statistical pocket book Bangladesh 2016. Statistics and Informatics Division, Ministry of Planning, Government of the people’s republic of Bangladesh.

  • Barrett-Lennard, E. G., 2003. The interaction between water logging and salinity in higher plants: causes, consequences and implications. Plant and Soil 253: 35–54.

    Article  CAS  Google Scholar 

  • Basar, A., 2012. Water security in the coastal region of Bangladesh: would desalinization be a solution to the vulnerable communities of the Sundarbans? Bangladesh Journal of Sociology 9: 31–39.

    Google Scholar 

  • Bates, L. S., R. P. Waldren & I. D. Teare, 1973. Rapid determination of free proline water stress studies. Plant and Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Bidalia, A., M. Hanief & K. S. Rao, 2017. Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity. Photosynthetica 55(2): 231–239.

    Article  CAS  Google Scholar 

  • Bordbar, M. H., T. Martin, M. Latif & W. Park, 2015. Effects of long-term variability on projection of twenty-first-century dynamic sea level. Nature Climate change 5: 343–347.

    Article  Google Scholar 

  • Chapman, V. J., 1976. mangrove Vegetation. J. Cramer, Germany.

    Google Scholar 

  • Chen, Y. P. & Y. Ye, 2014. Early responses of Avicennia marina (Forsk) Vierh. To intertidal elevation and light level. Aquatic Botany 112: 33–40.

    Article  CAS  Google Scholar 

  • Christensen, J. H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. K. Kolli, W. T. Kwon, R. Laprise, et al., 2007. Regional climate projections. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marqquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate change 2007: the physical science basis, contribution of working group to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge: 847–940.

    Google Scholar 

  • Church, J. A. & N. J. White, 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters. https://doi.org/10.1029/2005GL024826.

    Article  Google Scholar 

  • Datta, P. N. & M. Ghose, 2003. Estimation of osmotic potential and free amino acids in some mangroves of the Sundarbans, India. Acta Botanica Croatica 62(1): 37–45.

    CAS  Google Scholar 

  • Ellison, J. C. 2015. Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecol Manage 23:115–137, https://doi.org/10.1007/s11273-014-9397-8.

    Article  Google Scholar 

  • Feller, I. C., D. F. Whigham, K. L. McKee & C. E. Lovelock, 2003. Nitrogen limitation of growth and nutrient dynamics in a mangrove forest, Indian River Lagoon, Florida. Oecologia 134: 405–414.

    Article  PubMed  Google Scholar 

  • Gandaseca, S., M. M. P. Ahmad, N. S. Z. Muhammad, H. H. Ahmad, H. Z. Pakhriazad & A. Arifin, 2016. Assessment of nitrogen and phosphorus in mangrove forest soil at Awat-Awat Lawas Sarawak. American Journal of Agriculture and Forestry 4(5): 136–139.

    Article  Google Scholar 

  • Hiscox, J. D. & G. F. Israelstam, 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332–1334.

    Article  CAS  Google Scholar 

  • Janardhan, K. V., A. S. Parashivamurthy, K. Giriraj & S. Panchaksharaiah, 1975. A rapid method for determination of osmotic potential of plant cell sap. Curr. Sci. 44: 390–391.

    Google Scholar 

  • Janousek, C. N. & C. L. Folger, 2013. Inter-specific variation in salinity effects on germination in Pacific Northwest tidal wetland plants. Aquatic Botany 111: 104–111.

    Article  CAS  Google Scholar 

  • Karim, M. F. & N. Mimura, 2008. Impacts of climate change and sea level rise on cyclonic storm surge floods in Bangladesh. Global Environmental Change 18: 490–500.

    Article  Google Scholar 

  • Kathiresan, K. & B. L. Bingham, 2001. Biology of mangroves and mangrove ecosystem. Advances in Marine Biology 40: 81–251.

    Article  Google Scholar 

  • Krauss, K. W. & J. A. Allen, 2003. Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii. Aquatic Botany 77: 311–324.

    Article  Google Scholar 

  • Krauss, K. W. & M. C. Ball, 2013. On the halophytic nature of mangroves. Trees 27: 7–11.

    Article  Google Scholar 

  • Krauss, K. W., C. E. Lovelock, K. L. McKee, L. Lopez-Hoffman, S. M. L. Ewe & W. P. Sousa, 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89: 105–127.

    Article  Google Scholar 

  • MacMillan, C., 1974. Salt tolerance of mangroves and submerged aquatic plants. In Reimold, R. J. & W. H. Queen (eds), Ecology of Halophytes. Academic Press, New York: 379–390.

    Chapter  Google Scholar 

  • Mahmood, H., 2015. Handbook of selected plant species of the Sundarbans and the embankment ecosystem, Sustainable Development and Biodiversity Conservation in Coastal protection Forests, Bangladesh, GIZ GmbH, German Federal Ministry for Economic Cooperation and Development (BMZ).

  • Mahmood, H., S. Saha, M. R. H. Siddique & M. N. Hasan, 2014. Salinity stress on growth, nutrients and carbon distribution in seedlings parts of Heritiera fomes. International Journal of Environmental Engineering 1(4): 71–77.

    Google Scholar 

  • Makkar, H. P. S., M. Bluemmel, N. K. Borowy & K. Becker, 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture 61: 161–165.

    Article  CAS  Google Scholar 

  • Mangora, M. M., 2016. Nutrient enrichment and saline conditions decreases growth and photosynthesis of the mangrove Heritiera littoralis Dryand. Open Journal of Marine Science 6: 293–301.

    Article  Google Scholar 

  • Mansour, M. M. F., K. H. A. Salama, F. Z. M. Ali & A. F. A. Hadid, 2005. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. General and Applied Plant Physiology 31: 29–41.

    CAS  Google Scholar 

  • Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic press, New York.

    Google Scholar 

  • Meng, X., P. Xia, Z. Li & D. Meng, 2017. Mangrove development and its response to Asian monsoon in the Yingluo Bay (SW China) over the last 2000 years. Estuaries and Coasts 40: 540–552.

    Article  CAS  Google Scholar 

  • Minar, M. H., M. B. Hossain & M. D. Shamsuddin, 2013. Climate change and coastal zone of Bangladesh: vulnerability, resilience and adaptability. Middle-East Journal of Science and Research 13(1): 114–120.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Mustari, S. & A. H. M. Z. Karim, 2014. Impact of salinity on the socio-environmental life of coastal people of Bangladesh. Asian Journal of Social Sciences and Humanities 3(1): 12–18.

    Google Scholar 

  • Naskar, K. R., R. N. Mandal, S. Dolanchampa, N. Sen & A. K. Sarkar, 1987. Investigation on seedling development vis-à-vis plantation of Heritiera fomes Buch.-Ham beyond the intertidal non-saline zones. Journal of Interacademia 1(3): 177–182.

    Google Scholar 

  • Parmesan, C., M. T. Burrows, C. M. Duarte, E. S. Poloczanska, A. J. Richardson, D. S. Schoeman & M. C. Singer, 2013. Beyond climate change attribution in conservation and ecological research. Ecology Letters 16: 58–71.

    Article  PubMed  Google Scholar 

  • Patel, N. T., A. Gupta & A. N. Pandey, 2010. Salinity Tolerance of Avicennia marina (Forssk.) Vierh. from Gujarat coasts of India. Aquatic Botany 93(1): 9–16.

    Article  CAS  Google Scholar 

  • Proffitt, C. E. & S. E. Travis, 2010. Red mangrove seedling survival, growth, and reproduction: effects of environment and maternal genotype. Estuaries and Coasts 33: 890–901.

    Article  CAS  Google Scholar 

  • Saenger, P., 2002. Mangrove Ecology, Silviculture and Conservation. Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Sarker, S. K., R. Reeve, J. Thompson, N. K. Paul & J. Matthiopoulos, 2016. Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem? Scientific Reports. https://doi.org/10.1038/srep21234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seki, M., T. Umezawa, K. Urano & K. Shinozaki, 2007. Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology 10: 296–302.

    Article  PubMed  CAS  Google Scholar 

  • Shan, L., Z. RenChao, D. SuiSui & S. SuHua, 2008. Adaptation to salinity in mangroves: implication on the evolution of salt- tolerance. Chinese Science Bulletin 53(11): 1708–1715.

    Google Scholar 

  • Shiau, Y. J., S. C. Lee, T. H. Chen, G. Tian & C. Y. Chiu, 2017. Water salinity effects on growth and nitrogen assimilation rate of mangrove (Kandelia candel) seedlings. Aquatic Botany 137: 50–55.

    Article  CAS  Google Scholar 

  • Siddiqi, N. A., 2001. Mangrove Forestry in Bangladesh. University of Chittagong, Institute of Forestry and Environmental Sciences, Bangladesh.

    Google Scholar 

  • Siddique, M. R. H., S. Saha, S. Serajis & H. Mahmood, 2017. Salinity strongly drives the survival, growth, leaf demography, nutrients partitioning in seedling parts of Xylocarpus granatum. Iforest 10: 851–856.

    Article  Google Scholar 

  • Spalding, E. A. & M. W. Hester, 2007. Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise. Estuaries Coasts 30: 214–225.

    Article  Google Scholar 

  • Spalding, M. D., F. Blasco & C. D. Field, 1997. World Mangrove Atlas. The International Society for Mangrove Ecosystems, Okinawa.

    Google Scholar 

  • Tomlinson, P. B., 1986. The Botany of Mangroves. Press Syndicate of the University of Cambridge, New York.

    Google Scholar 

  • Waisel, Y., 1972. Biology of Halophytes. Academic Press, New York and London.

    Google Scholar 

  • Wang, W., Z. Yan, S. You, Y. Zhang, L. Chen & G. Lin, 2011. Mangroves: obligate or facultative halophytes? A review. Trees 25: 953–963.

    Article  CAS  Google Scholar 

  • Zheng, W. J., W. Q. Wang & P. Lin, 1999. Dynamics of element contents during the development of hypocotyls and leaves of certain mangrove species. Journal of Experimental Marine Biology and Ecology 233: 248–257.

    Article  Google Scholar 

Download references

Acknowledgements

The authors cordially acknowledge the financial support of Nagao Natural Environment Foundation (Granted in 2015), 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-0022, Japan. The authors also acknowledge the technical supports from Nutrient Dynamics Laboratory of Forestry and Wood Technology Discipline, Khulna University, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rabiul Alam.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest in this article.

Additional information

Handling editor: K.W. Krauss

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.R., Mahmood, H. & Rahman, M.M. Maternal origins induced plasticity in salt adaptability of Avicennia officinalis L. seedlings in the Sundarbans of Bangladesh. Hydrobiologia 820, 227–244 (2018). https://doi.org/10.1007/s10750-018-3659-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3659-z

Keywords

Navigation