Skip to main content
Log in

Pesticide increases transgenerational cost of inducible defenses in a freshwater rotifer

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In addition to natural stressors such as predation risk, aquatic organisms receive the simultaneous impact of anthropogenic stressors like pollution. In order to advance our understanding of multiple stressor effects, we evaluated the potential costs in the population growth rate derived from the sub-lethal effect of exposure to the pesticide methamidophos and from the expression of morphological defenses front to predation risk, in the rotifer Brachionus calyciflorus. Costs were evaluated both in the organisms that were exposed to the stressors and in their offspring. Our hypotheses were (1) plastic morphological defenses under exposure to pesticides have fitness costs, which may be transmitted from the parental to the filial generation, and (2) interactive effects between pesticides and predation are dependent of the mother’s age. Our results indicate that pesticide exposure increased the costs, expressed as reduction in population growth rate, generated by the induction of defenses. Interestingly, these costs were detected only in the offspring of the treated organisms and were depended on the age of the mother. This indicates that the sub-lethal effects of predation were increased by pesticide pollution. This study provides experimental evidence of the transgenerational costs of phenotypic plasticity linked to interaction of natural and anthropic stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal, A. A., C. Laforsch & R. Tollrian, 1999. Transgenerational induction of defenses in animals and plants. Nature 401: 60–63.

    Article  CAS  Google Scholar 

  • Altshuler, I., B. Demiri, S. Xu, A. Constantin, N. D. Yan & M. E. Cristescu, 2011. An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integrative and Comparative Biology 51: 623–633.

    Article  CAS  PubMed  Google Scholar 

  • Altshuler, I., A. M. McLeod, J. K. Colbourne, N. D. Yan & M. E. Cristescu, 2015. Synergistic interactions of biotic and abiotic environmental stressors on gene expression. Genome 58: 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Alvarado-Flores, J., R. Rico-Martínez, A. Adabache-Ortíz & M. Silva-Briano, 2015. Morphological alterations in the freshwater rotifer Brachionus calyciflorus Pallas 1766 (Rotifera: Monogononta) caused by Vinclozolin chronic exposure. Ecotoxicology 24: 915–925.

    Article  CAS  PubMed  Google Scholar 

  • APHA, AWWA, WEF, 2012. Standard Methods for the Examination of Water and Wastewaters, 22th ed. American Public Health Association, Washigton D.C

  • Aránguiz-Acuña, A., R. Ramos-Jiliberto, S. Nandini, S. S. S. Sarma, R. O. Bustamante & V. Toledo, 2010. Benefits, costs and reactivity of inducible defences: an experimental test with rotifers. Freshwater Biology 55: 2114–2122.

    Article  Google Scholar 

  • Aránguiz-Acuña, A., R. Ramos-Jiliberto & R. O. Bustamante, 2011a. Experimental evidence that induced defenses promote coexistence of zooplanktonic populations. Journal of Plankton Research 33: 469–477.

    Article  Google Scholar 

  • Aránguiz-Acuña, A., R. Ramos-Jiliberto & R. O. Bustamante, 2011b. Experimental assessment of interaction costs of inducible defenses in plankton. Journal of Plankton Research 33: 1445–1454.

    Article  Google Scholar 

  • Aránguiz-Acuña, A. & R. Ramos- Jiliberto, 2014. Diapause may promote coexistence of zooplankton competitors. Journal of Plankton Research 36: 978–988.

    Article  Google Scholar 

  • Armengol, X., L. Boronat, A. Camacho & W. A. Wurtsbaugh, 2001. Grazing by a dominant rotifer Conochilus unicornis Rousselet in a mountain lake: in situ measurements with synthetic microspheres. Hydrobiologia 446(447): 107–114.

    Article  Google Scholar 

  • Barry, J. M., 1998. Endosulfan-enhanced crest induction in Daphnia longicephala: evidence for cholinergic innervation of kairomone receptors. Journal of Plankton Research 20: 1219–1231.

    Article  CAS  Google Scholar 

  • Beckerman, A., T. G. Benton, E. Ranta, V. Kaitalac & P. Lundbergd, 2002. Population dynamic consequences of delayed life-history effects. Trends in Ecology and Evolution 17: 263–269.

    Article  Google Scholar 

  • Benard, M. F., 2004. Predator-induced phenotypic plasticity in organisms with complex life histories. Annual Review in Ecology and Evolution System 35: 651–673.

    Article  Google Scholar 

  • Bendis, R. J. & R. A. Relyea, 2016. If you see one, have you seen them all?: community-wide effects of insecticide cross-resistance in zooplankton populations near and far from agriculture. Environmental Pollution 215: 234–246.

    Article  CAS  PubMed  Google Scholar 

  • Biondi, A., L. Zappala, J. D. Stark & N. Desneux, 2013. Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 8: e76548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-Algal Biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Caswell, H., 2001. Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed. Sinauer Associates Inc, Sunderland.

    Google Scholar 

  • Christensen, M. R., M. D. Graham, R. D. Vinebrooke, D. L. Findlay, M. J. Paterson & M. A. Turner, 2006. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology 12: 2316–2322.

    Article  Google Scholar 

  • Coors, A. & L. De Meester, 2008. Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology 45: 1820–1828.

    Article  Google Scholar 

  • Dahms, H. U., A. Hagiwara & J.-S. Lee, 2011. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquatic Toxicology 101: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • DeMille, C. M., S. E. Arnott & G. G. Pyle, 2016. Variation in copper effects on kairomone-mediated responses in Daphnia pulicaria. Ecotoxicology and Environmental Safety 126: 264–272.

    Article  CAS  PubMed  Google Scholar 

  • Fernández-González, M. A., J. González-Barrientos, M. J. Carter & R. Ramos-Jiliberto, 2011. Parent-to-offspring transfer of sublethal effects of copper exposure: metabolic rate and life-history traits of Daphnia. Revista Chilena de Historia Natural 84: 195–201.

    Article  Google Scholar 

  • Forbes, V. & P. Calow, 1999. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environmental Toxicology and Chemistry 18: 1544–1556.

    Article  CAS  Google Scholar 

  • Garay-Narváez, L. & R. Ramos-Jiliberto, 2009. Induced defenses within food webs: the role of community trade-offs, delayed responses, and defense specificity. Ecological Complexity 6: 383–391.

    Article  Google Scholar 

  • Gilbert, J. J., 2009. Predator-specific inducible defenses in the rotifer Keratella tropica. Freshwater Biology 54: 1933–1946.

    Article  Google Scholar 

  • Gilbert, J. J., 2012. Predator-induced defense in rotifers: developmental lags for morph transformations, and effect on population growth. Aquatic Ecology 46: 475–486.

    Article  Google Scholar 

  • Gilbert, J. J., 2013. The cost of predator-induced morphological defense in rotifers: experimental studies and synthesis. Journal of Plankton Research 35: 461–472.

    Article  Google Scholar 

  • Gilbert, J. J. & M. C. Diéguez, 2010. Low crowding threshold for induction of sexual reproduction and diapause in a Patagonian rotifer. Freshwater Biology 55: 1705–1718.

    Article  Google Scholar 

  • Gilbert, J. J. & T. Schröder, 2003. The ciliate epibiont Epistylis pygmaeum: selection for zooplankton hosts, reproduction and effect on two rotifers. Freshwater Biology 48: 878–893.

    Article  Google Scholar 

  • Gilbert, J. J. & T. Schröder, 2007. Intraclonal variation in propensity for mixis in several rotifers: variation among females and with maternal age. Hydrobiologia 593: 121–128.

    Article  Google Scholar 

  • Giron, D. & J. Casas, 2003. Mothers reduce egg provisioning with age. Ecology Letters 6: 273–277.

    Article  Google Scholar 

  • Guo, R., X. Ren & H. Ren, 2012a. Assessment the toxic effects of dimethoate to rotifer using swimming behavior. Bulletin of Environmental Contamination and Toxicology 89: 568–571.

    Article  CAS  PubMed  Google Scholar 

  • Guo, R., X. Ren & H. Ren, 2012b. Effects of dimethoate on rotifer Brachionus calyciflorus using multigeneration toxicity tests. Journal of Environmental Science and Health, Part B 47: 883–890.

    Article  CAS  Google Scholar 

  • Hamedi, N., Y. Fathipour & M. Saber, 2011. Sublethal effects of abamectin on the biological performance of the predatory mite, Phytoseius plumifer (Canestrini and Fanzago) (Acari: Phytoseiidae). Experimental Applied Acarology 53: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Hanazato, T., 2001. Pesticide effects on freshwater zooplankton: an ecological perspective. Environmental Pollution 112: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Harvell, D. C., 1990. The ecology and evolution of inducible defenses. Quarterly Review of Biology 65: 323–340.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, M. A., 1987. Anticholinesterase properties of methamidophos and acephate in insects and mammals. Bulletin of Environmental Contamination and Toxicology 38: 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim, Y. B. & T. S. Yee, 2000. Influence of sublethal exposure to abamectin on the biological performance of Neoseiulus longispinosus (Acari: Phytoseiidae). Journal of Economic Entomology 93: 1085–1089.

    Article  CAS  PubMed  Google Scholar 

  • Jamieson, C. D. & B. Santer, 2003. Maternal aging in the univoltine freshwater copepod Cyclops kolensis: variation in egg sizes, egg development times, and naupliar development times. Hydrobiologia 510: 75–81.

    Article  Google Scholar 

  • Janssens, L. & R. Stoks, 2013. Predation risk causes oxidative damage in prey. Biology Letters 9: 20130350.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lampert, W., 1987. Predictability in lake ecosystems: the role of biotic interactions. In Schulze, E. D. & H. Zwölfer (eds), Potential and Limitations of Ecosystem Analysis. Springer-Verlag, Berlin: 333–346.

    Chapter  Google Scholar 

  • Lampert, W., K. O. Rothhaupt & E. von Elert, 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnology and Oceanography 39: 1543–1550.

    Article  CAS  Google Scholar 

  • Lima, S. L., 1998. Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48: 25–34.

    Article  Google Scholar 

  • Lin, K., S. Zhou, C. Xu & W. Liu, 2006. Enantiomeric resolution and biotoxicity of methamidophos. Journal of Agricultural and Food Chemistry 54: 8134–8138.

    Article  CAS  PubMed  Google Scholar 

  • Lo, E., 2005. Gaussian error propagation applied to ecological data: post-ice-storm-downed woody biomass. Ecological Monographs 75: 451–466.

    Article  Google Scholar 

  • Ma, Q., Y. L. Xi, J. Y. Zhang, X. L. Wen & X. L. Xiang, 2010. Differences in life table demography among eight geographic populations of Brachionus calyciflorus (Rotifera) from China. Limnologica-Ecology and Management of Inland Waters 40: 16–22.

    Article  Google Scholar 

  • Malate, S., J. Blanco, C. Richter, B. Milow & M. I. Maldonado, 1999. Solar photocatalytic mineralization of commercial pesticides: methamidophos. Chemosphere 38: 1145–1156.

    Article  Google Scholar 

  • Manly, B. F., 2006. Randomization, Bootstrap and Monte Carlo methods in biology, 3rd ed. Chapman and Hall, London.

    Google Scholar 

  • Marcial, H. S. & A. Hagiwara, 2007. Effect of diazinon on life stages and resting egg hatchability of rotifer Brachionus plicatilis. Hydrobiologia 593: 219–225.

    Article  CAS  Google Scholar 

  • Marshall, D. J., 2008. Transgenerational plasticity in the sea: context dependent maternal effects across the life history. Ecology 89: 418–427.

    Article  PubMed  Google Scholar 

  • Martínez-Jerónimo, F. & G. Muñoz-Mejía, 2007. Evaluation of the sensitivity of three cladoceran species widely distributed in Mexico to three reference toxicants. Journal of Environmental Science and Health Part A 42: 1417–1424.

    Article  Google Scholar 

  • Moran, D. T., G. M. Dias & D. J. Marshall, 2010. Associated costs and benefits of a defended phenotype across multiple environments. Functional Ecology 24: 1299–1305.

    Article  Google Scholar 

  • Newman, M. C., 2001. Uptake, biotransformation, detoxification, elimination and accumulation. In Newman, M. C. (ed.), Fundamentals of Ecotoxicology. CRC Press, Florida: 25–49.

    Google Scholar 

  • Opit, G. P. & J. E. Throne, 2007. Influence of maternal age on the fitness of progeny in the rice Weevil, Sitophilus oryzae (Coleoptera: Curculionidae). Environmental Entomology 36: 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Pestana, J. L. T., S. Loureiro, D. J. Baird & A. M. V. M. Soares, 2010. Pesticide exposure and inducible antipredator responses in the zooplankton grazer, Daphnia magna Straus. Chemosphere 78: 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Pope, C., S. Karanth & J. Liu, 2005. Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environmental Toxicology and Pharmacology 19: 433–446.

    Article  CAS  PubMed  Google Scholar 

  • Preston, B. L., G. Cecchine & T. W. Snell, 1999. Effects of pentachlorophenol on predator avoidance behavior of the rotifer Brachionus calyciflorus. Aquatic Toxicology 44: 201–212.

    Article  CAS  Google Scholar 

  • Rainieri, M., 1984. Histochemical investigations of Rotifera Bdelloidea. I. localization of cholinesterase activity. Histochemical Journal 16: 601–616.

    Article  Google Scholar 

  • Ramos-Jiliberto, R. & A. Aránguiz-Acuña, 2013. Bidimensional transfer of effects among organisms: an overlooked concept in community ecology. Revista Chilena de Historia Natural 86: 15–20.

    Article  Google Scholar 

  • Relyea, R. A., 2002. Costs of phenotypic plasticity. American Natuarlist 159: 272–282.

    Article  Google Scholar 

  • Relyea, R. A., 2005. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications 15: 618–627.

    Article  Google Scholar 

  • Relyea, R. A., 2012. New effects of roundup on amphibians: predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecological Applications 22: 634–647.

    Article  PubMed  Google Scholar 

  • Relyea, R. A. & N. Mills, 2001. Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles. Proceedings of the National Academy of Sciences of the United States of America 98: 2491–2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Relyea, R. & J. Hoverman, 2006. Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecology Letters 9: 1157–1171.

    Article  PubMed  Google Scholar 

  • Riessen, H. P., 2012. Costs of predator-induced morphological defences in Daphnia. Freshwater Biology 57: 1422–1433.

    Article  Google Scholar 

  • Riessen, H. P., R. D. Linley, I. Altshuler, M. Rabus, T. Söllradl, H. Clausen-Schaumann, C. Laforsch & N. D. Yan, 2012. Changes in water chemistry can disable plankton prey defenses. Proceedings of National Academy of Sciences 109: 15377–15382.

    Article  CAS  Google Scholar 

  • Sakamoto, M., K. H. Chang & T. Hanazato, 2006. Inhibition of development of anti-predator morphology in the small cladoceran Bosmina by an insecticide: impact of an anthropogenic chemical on prey-predator interactions. Freshwater Biology 51: 1974–1983.

    Article  CAS  Google Scholar 

  • Schröder, T. & J. J. Gilbert, 2009. Maternal age and spine development in the rotifer Brachionus calyciflorus: increase of spine length with birth orders. Freshwater Biology 54: 1054–1065.

    Article  Google Scholar 

  • Schulz, R., 2004. Exposure, effects, and risk mitigation of insecticide pollution. Journal of Environmental Quality 33: 419–448.

    Article  CAS  PubMed  Google Scholar 

  • Serra, M. & C. E. King, 1999. Optimal rates of bisexual reproduction in cyclical parthenogens with density-dependent growth. Journal of Evolutionary Biology 12: 263–271.

    Article  Google Scholar 

  • Serra, M., T. W. Snell & C. E. King, 2004. The timing of sex in cyclically parthenogenetic rotifers. In Moya, A. & E. Font (eds), Evolution from Molecules to Ecosystems. Oxford University Press, Oxford: 135–146.

    Google Scholar 

  • Snell, T. W., 1987. Sex, population dynamics and resting eggs production in rotifers. Hydrobiologia 144: 105–111.

    Article  Google Scholar 

  • Snell, T. W. & C. Joaquim-Justo, 2007. Workshop on rotifers in ecotoxicology. Hydrobiologia 593: 227–232.

    Article  Google Scholar 

  • Snell, T. W. & B. D. Moffat, 1992. A 2-d life cycle test with the rotifer Brachionus calyciflorus. Environmental Toxicology and Chemistry 11: 1249–1257.

    Article  CAS  Google Scholar 

  • Southwood, T. R. E. & P. A. Henderson, 2000. Ecological methods, 3rd ed. Blackwell Sciences, Oxford.

    Google Scholar 

  • Stemberger, R. S., 1981. A general approach to the culture of planktonic rotifers. Canadian Journal of Fisheries and Aquatic Sciences 38: 721–724.

    Article  Google Scholar 

  • Stemberger, R. S., 1988. Reproductive costs and hydrodynamic benefits of chemically induced defenses in Keratella testudo. Limnology and Oceanography 33: 593–606.

    Article  Google Scholar 

  • Stemberger, R. S., 1990. Food limitation, spination, and reproduction in Brachionus calyciflorus. Limnology and Oceanography 35: 33–44.

    Article  Google Scholar 

  • Tien, C.-J. & C. S. Chen, 2012. Assessing the toxicity of organophosphorous pesticides to indigenous algae with implication for their ecotoxicological impact to aquatic ecosystems. Journal of Environmental Science and Health, Part B 47: 901–912.

    Article  CAS  Google Scholar 

  • Tollrian, R. & C. D. Harvell, 1999. The evolution of inducible defenses: current ideas. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, New Jersey: 306–321.

    Google Scholar 

  • Tomlin, C., 1994. The Pesticide Manual, 10th ed. Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Trekels, H., F. Van de Meutter & R. Stoks, 2013. Predator cues magnify effects of the pesticide endosulfan in water bugs in a multi-species test in outdoor containers. Aquatic Toxicology 138(139): 116–122.

    Article  PubMed  Google Scholar 

  • Van Allen, B. G. & V. H. Rudolf, 2013. Ghosts of habitats past: environmental carry-over effects drive population dynamics in novel habitat. The American Naturalist 181(5): 596–608.

    Article  PubMed  Google Scholar 

  • Van Buskirk, J., 2000. The costs of an inducible defense in anuran larvae. Ecology 81: 2813–2821.

    Article  Google Scholar 

  • Van der Stap, I., M. Vos & W. M. Mooij, 2007. Inducible defenses and rotifer food chain dynamics. Hydrobiologia 593: 103–110.

    Article  Google Scholar 

  • Van Straalen, N. M. & A. Hoffmann, 2000. Review of experimental evidence of physiological costs of tolerance to toxicants. In Kammenga, J. & R. Laskowski (eds), Demography in Ecotoxicology. Wiley, Chichester: 147–161.

    Google Scholar 

  • Wallace, R. L. & H. A. Smith, 2009. Rotifera. In Likens, G. E. (ed.), Encyclopedia of Inland Waters. Elsevier, Oxford: 689–703.

    Chapter  Google Scholar 

  • Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera 1: Biology, Ecology and Systematics. Backhuys Publishers, Leiden.

    Google Scholar 

  • Werner, E. E. & S. D. Peacor, 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology 84: 1083–1100.

    Article  Google Scholar 

Download references

Acknowledgements

I.H.-F. acknowledges a Doctoral scholarship from Comisión Nacional de Investigación Científica y Tecnológica (CONICYT-PCHA/Doctorado Nacional/2015-211521). This study was supported by Fondo Nacional de Desarrollo Científico y Tecnológico grants: FONDECYT 1150348 to R.R.-J and FONDECYT 11130653 to A.A.-A. The authors thank Luis Valenzuela and Claudio Quezada for statistical assistance, and two anonymous reviewers for their helpful suggestions to an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Aránguiz-Acuña.

Additional information

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heine-Fuster, I., Aránguiz-Acuña, A. & Ramos-Jiliberto, R. Pesticide increases transgenerational cost of inducible defenses in a freshwater rotifer. Hydrobiologia 799, 249–260 (2017). https://doi.org/10.1007/s10750-017-3221-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3221-4

Keywords

Navigation