Advertisement

Hydrobiologia

, Volume 788, Issue 1, pp 245–265 | Cite as

Congregations of the leaf-shredding insect Lepidostoma togatum mediate exceptionally rapid mass loss from leaf litter in Nova Scotia rivers

  • Irene V. Andrushchenko
  • Barry R. Taylor
  • Jantina Toxopeus
  • Erin Wilson
Primary Research Paper

Abstract

In shallow, rocky-bottomed river systems in Nova Scotia, Canada, decomposition rates of autumn-fallen red maple (Acer rubrum) and speckled alder (Alnus incana) leaf litter were determined in spring and early summer using litter bags. In most shaded upstream tributaries, decomposition followed a typical exponential curve (k = −0.013 to −0.032 day−1). In unshaded, downstream reaches, and sometimes in low-order tributaries, decomposition was often exceptionally rapid (2–5% day−1) and followed a linear pattern, associated with dense congregations of the caddisfly Lepidostoma togatum. Linear mass loss persisted until litter bags were empty, after 35–50 days. Colonization of litter bags by L. togatum was advanced after 1 week, and peak densities (40–120 animals/bag) could be reached in 2–3 weeks. In a feeding experiment, alder litter in fine mesh litter bags containing 30 L. togatum larvae lost ~2.1% mass day−1, compared with only 0.1% day−1 without L. togatum. The L. togatum congregations were a distinctly seasonal phenomenon, beginning in early June and ending in mid-July when the last of the larvae (one or two cohorts) pupated. Severe resource limitation among detritivores in these degraded river systems apparently leads to dense colonization of added litter and extremely fast, shredder-mediated decomposition.

Keywords

Litter decomposition Shredders Linear model Streams Resource limitation 

Notes

Acknowledgements

We extend thanks to M. Hines, T. Holden, C. Walsh and L.A. Dort for valuable assistance in the laboratory and field, to Y. Lin for DNA extraction, to D. Garbary and C. Bishop (Biology Dept., St. Francis Xavier University) for helpful comments on an earlier draft and to the Canadian Foundation for Innovation (CFI) and St. Francis Xavier University for funding support.

References

  1. Abelho, M. & M. A. S. Graça, 2006. Effects of nutrient enrichment on decomposition and fungal colonization of sweet chestnut leaves in an iberian stream (Central Portugal). Hydrobiologia 560: 239–248.CrossRefGoogle Scholar
  2. Baldy, V., M. O. Gessner & E. Chauvet, 1995. Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74: 93–102.CrossRefGoogle Scholar
  3. Bärlocher, F., 1985. The role of fungi in the nutrition of stream invertebrates. Botanical Journal of the Linnean Society 91: 85–94.CrossRefGoogle Scholar
  4. Bärlocher, F. & B. Kendrick, 1974. Dynamics of the fungal population on leaves in a stream. Journal of Ecology 62: 761–791.CrossRefGoogle Scholar
  5. Boulton, A. J. & P. I. Boon, 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Australian Journal of Marine and Freshwater Research 42: 1–43.CrossRefGoogle Scholar
  6. Chauvet, E., N. Giani & M. O. Gessner, 1993. Breakdown and invertebrate colonization of leaf litter in two contrasting streams: significance of oligochaetes in a large river. Canadian Journal of Fisheries and Aquatic Sciences 50: 488–495.CrossRefGoogle Scholar
  7. Chung, K., J. B. Wallace & J. W. Grubaugh, 1993. The impact of insecticide treatment on abundance, biomass, and production of litterbag fauna in a headwater stream: a study of pretreatment, treatment and recovery. Limnologica 28: 93–106.Google Scholar
  8. Dobson, M. & A. G. Hildrew, 1992. A test of resource limitation among shredding detritivores in low order streams in southern England. Journal of Animal Ecology 61: 69–77.CrossRefGoogle Scholar
  9. Elosegi, A. & S. Sabater, 2013. Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia 712: 129–143.CrossRefGoogle Scholar
  10. Ferreira, V., V. Gulis & M. A. S. Graça, 2006. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149: 718–729.CrossRefPubMedGoogle Scholar
  11. Floyd, T. A., C. MacInnis & B. R. Taylor, 2009. Effects of artificial woody structures on Atlantic salmon habitat and populations in a Nova Scotia stream. River Research and Applications 25: 272–282.CrossRefGoogle Scholar
  12. Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.PubMedGoogle Scholar
  13. Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams: A review. International Review of Hydrobiology 86: 383–394.CrossRefGoogle Scholar
  14. Graça, M. A. S., R. C. F. Ferreira & C. N. Coimbra, 2001. Litter processing along a stream gradient: the role of invertebrates and decomposers. Journal of the North American Benthological Society 20: 408–420.CrossRefGoogle Scholar
  15. Grafius, E. & N. H. Anderson, 1979. Population dynamics, bioenergetics, and role of Lepidostoma quercina Ross (Trichoptera: Lepidostomatidae) in an Oregon woodland stream. Ecology 60: 433–441.CrossRefGoogle Scholar
  16. Grafius, E. & N. H. Anderson, 1980. Population dynamics and role of two species of Lepidostoma (Trichoptera: Lepidostomatidae) in an Oregon coniferous forest stream. Ecology 61: 808–816.CrossRefGoogle Scholar
  17. Gulis, V., V. Ferreira & M. A. S. Graça, 2006. Stimulation of litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology 51: 1655–1669.CrossRefGoogle Scholar
  18. Hieber, M. & M. Gessner, 2002. Contribution of stream detritivores, fungi and bacteria to leaf breakdown based on biomass estimates. Ecology 83(4): 1026–1038.CrossRefGoogle Scholar
  19. Hildrew, A. G., C. R. Townsend, J. Francis & K. Finch, 1984. Cellulolytic decomposition in streams of contrasting pH and its relationship with invertebrate community structure. Freshwater Biology 14(3): 323–328.CrossRefGoogle Scholar
  20. Houghton, D. C., C. M. Brandin & K. A. Brakel, 2011. Analysis of the caddisflies (Trichoptera) of the Manistee River watershed, Michigan. Great Lakes Entomologist 44: 1–16.Google Scholar
  21. Kaushik, N. K. & H. B. N. Hynes, 1971. The fate of the dead leaves that fall into streams. Archiv für Hydrobiologie 68: 465–515.Google Scholar
  22. Knopp, M. & R. Cormier, 1997. Mayflies: An Angler’s Study of Trout Water Ephemeroptera. Greycliff Publishing Company, Helena.Google Scholar
  23. Kominoski, J. S., L. B. Marczak & J. S. Richardson, 2011. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities. Ecology 92: 151–159.CrossRefPubMedGoogle Scholar
  24. MacDonald, E. E. & B. R. Taylor, 2008. Factors influencing litter decomposition rates in upstream and downstream reaches of river systems of eastern Canada. Fundamental and Applied Limnology 171: 71–86.CrossRefGoogle Scholar
  25. MacLean, D. B., 1995. Adult Trichoptera of the Devil Track River watershed, Cook County, Minnesota, and their role in biomonitoring. Great Lakes Entomologist 28: 135–154.Google Scholar
  26. Magoli, B., S. Lamothe & E. Chauvet, 2016. Litter breakdown for ecosystem integrity assessment also applies to streams affected by pesticides. Hydrobiologia 773: 87–102.CrossRefGoogle Scholar
  27. Maloney, D. C. & G. A. Lamberti, 1995. Rapid decomposition of summer-input streams in a northern Michigan stream. American Midland Naturalist 133: 184–195.CrossRefGoogle Scholar
  28. Melillo, J. M., J. D. Aber & J. F. Muratore, 1982. Nitrogen and lignin contol of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626.CrossRefGoogle Scholar
  29. Menendez, M., M. Martinez, O. Hernandez & F. A. Comin, 2001. Comparison of leaf decomposition in two Mediterranean rivers: a large eutrophic river and an oligotrophic stream (S. Catalonia, NE Spain). International Review of Hydrobiology 86: 475–486.CrossRefGoogle Scholar
  30. Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. Aquatic Insects of North America, 4th ed. Kendall/Hunt Publishing Company, Dubuque, Iowa.Google Scholar
  31. Minshall, G. W., 1967. Role of allochthonous detritus in the trophic structure of a woodland springbrook community. Ecology 48: 139–149.CrossRefGoogle Scholar
  32. Minshall, G. W., K. W. Cummins, R. C. Petersen, C. E. Cushing, D. A. Bruns, J. R. Sedell & R. L. Vannote, 1985. Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences 42: 1045–1055.CrossRefGoogle Scholar
  33. Peckarsky, B. L., P. R. Fraissinet, M. A. Penton & D. J. Conklin Jr., 1990. Freshwater Macroinvertebrates of Northeastern North America. Comstock Publishing Associates, Ithaca.Google Scholar
  34. Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.CrossRefGoogle Scholar
  35. Preston, C. M., J. A. Trofymow & The Canadian Intersite Decomposition Experiment Working Group, 2000. Variability in litter quality and its relationship to litter decay in Canadian forests. Canadian Journal of Botany 78: 1269–1287.CrossRefGoogle Scholar
  36. Richardson, J. S., 1991. Seasonal food limitation of detritivores in a montane stream: an experimental test. Ecology 72: 873–887.CrossRefGoogle Scholar
  37. Riipinen, M. P. & M. Dobson, 2010. Benthic organic matter biomass and invertebrate community structure in five conifer plantation streams in the Peak District (Derbyshire, England). Freshwater Forum 28: 61–75.Google Scholar
  38. Rowe, R. & J. S. Richardson, 2001. Community responses to experimental food depletion: resource tracking by stream invertebrates. Oecologia 129: 473–480.CrossRefGoogle Scholar
  39. Short, R. A., S. P. Canton & J. V. Ward, 1980. Detrital processing and associated macroinvertebrates in a colorado mountain stream. Ecology 61: 727–732.CrossRefGoogle Scholar
  40. Speaker, R., K. Moore & S. Gregory, 1984. Analysis of the process of retention of organic matter in stream ecosystems. Verhandlungen des Internationalen Verein Limnologie 22: 1835–1841. Google Scholar
  41. Stewart, K. W. & B. P. Stark, 1993. Nymphs of North American Stonefly Genera (Plecoptera). Entomological Society of America, Lanham.Google Scholar
  42. Stockley, R. A., G. S. Oxford & R. F. G. Ormond, 1998. Do invertebrates matter? Detrital processing in the River Swale-Ouse. The Science of the Total Environment 210: 427–435.CrossRefGoogle Scholar
  43. Taylor, B. R. & I. V. Andrushchenko, 2014. Interaction of water temperature and shredders on leaf litter breakdown: a comparison of streams in Canada and Norway. Hydrobiologia 721: 77–88.CrossRefGoogle Scholar
  44. Taylor, B. R. & A. N. Dykstra, 2005. Effects of hot ground water on a small swamp-stream in Nova Scotia, Canada. Hydrobiologia 545: 129–144.CrossRefGoogle Scholar
  45. Taylor, B. R., C. Mallaley & J. F. Cairns, 2007. Limited evidence that mixing leaf litter accelerates decomposition or increases diversity of decomposers in streams of eastern Canada. Hydrobiologia 592: 405–422.CrossRefGoogle Scholar
  46. Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem structure. Annual Review of Entomology 41: 115–139.CrossRefPubMedGoogle Scholar
  47. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.CrossRefGoogle Scholar
  48. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 2015. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 96: 1213–1228.CrossRefPubMedGoogle Scholar
  49. Weaver, J. S., 1988. A synopsis of the North American Lepidostomatidae (Trichoptera). Contributions of the American Entomological Institute 24: 1–141.Google Scholar
  50. Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.CrossRefGoogle Scholar
  51. Whiles, M. R., J. B. Wallace & K. Chung, 1993. The influence of Lepidostoma (Trichoptera: Lepidostomatidae) on recovery of leaf-litter processing in disturbed headwater streams. American Midland Naturalist 130: 356–363.CrossRefGoogle Scholar
  52. Wiggins, G. B., 2000. Larvae of the North American Caddisfly Genera (Trichoptera), 2nd ed. University of Toronto Press, Toronto.Google Scholar
  53. Woodward, G., M. O. Gessner, P. S. Giller, V. Gulis, S. Hladyz, A. Lecerf, B. Malmqvist, B. G. McKie, S. D. Tiegs, H. Cariss, M. Dobson, A. Elosegi, V. Ferreira, M. A. S. Graça, T. Fleituch, J. O. Lacoursière, M. Nistorescu, J. Pozo, G. Risnoveanu, M. Schindler, A. Vadineanu, L. B.-M. Vought & E. Chauvet, 2012. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336: 1438–1440.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Population Ecology DivisionSt. Andrews Biological StationSt. AndrewsCanada
  2. 2.Department of BiologySt. Francis Xavier UniversityAntigonishCanada
  3. 3.Department of BiologyWestern UniversityLondonCanada

Personalised recommendations