Skip to main content
Log in

Interaction of water temperature and shredders on leaf litter breakdown: a comparison of streams in Canada and Norway

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Litter decomposition in running water sometimes proceeds faster in small, cool tributaries than in warm, wide rivers because stenothermal, leaf-shredding invertebrates are more abundant in the cool streams. Evidence from eastern Canada suggests that the cold-stenothermal stonefly Leuctra has a disproportionate influence on rapid mass loss in upstream reaches of soft-water river systems, but is not replaced by an effective, warm-water shredder downstream. To test the generality of this observation, we compared litter decomposition rates in upstream (second or third order) and downstream (fourth or fifth order) reaches of a medium-size river system in Nova Scotia (Canada) and three river systems in Nordland (Norway). In all river systems, mass loss of nitrogen-rich speckled alder (Alnus incana) leaves and nitrogen-poor red maple (Acer rubrum) leaves proceeded faster at the upstream site only if water temperature there was significantly cooler than downstream. Decomposition rates in all systems were strongly correlated with abundance of Leuctra, and to a lesser extent the caddisfly Lepidostoma. The distribution of Leuctra seems to be driven primarily by water temperature, with a strong peak of abundance at 14°C, but may also be influenced by competition from other shredding species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baldy, V., M. O. Gessner & E. Chauvet, 1995. Bacteria, fungi and the breakdown of leaf-litter in a large river. Oikos 74: 93–102.

    Article  Google Scholar 

  • Bärlocher, F., 1985. The role of fungi in the nutrition of stream invertebrates. Botanical Journal of the Linnean Society 91: 85–94.

    Article  Google Scholar 

  • Benfield, E. F., R. W. Paul Jr & J. R. Webster, 1979. Influence of exposure technique on leaf breakdown rates in streams. Oikos 33: 386–391.

    Article  Google Scholar 

  • Benstead, J. P. & A. D. Huryn, 2011. Extreme seasonality of litter breakdown in an arctic spring-fed stream is driven by shredder phenology, not temperature. Freshwater Biology 56: 2034–2044.

    Article  Google Scholar 

  • Bergfur, J., 2007. Seasonal variation in leaf-litter breakdown in nine boreal streams: implications for assessing functional integrity. Fundamental and Applied Limnology 169: 319–330.

    Article  CAS  Google Scholar 

  • Boulton, A. J. & P. I. Boon, 1991. A review of methodology used to measure leaf litter decomposition in lotic environments—time to turn over an old leaf. Australian Journal of Marine and Freshwater Research 42: 1–43.

    Article  CAS  Google Scholar 

  • Boyero, L., R. G. Pearson, M. O. Gessner, L. A. Barmuta, V. Ferriera, M. A. S. Graça, D. Dudgeon, A. J. Boulton, M. Callisto, E. Chauvet, et al., 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters 14: 289–294.

    Article  PubMed  Google Scholar 

  • Chauvet, E., N. Giani & M. O. Gessner, 1993. Breakdown and invertebrate colonization of leaf-litter in 2 contrasting streams—significance of oligochaetes in a large river. Canadian Journal of Fisheries and Aquatic Sciences 50: 488–495.

    Article  Google Scholar 

  • Chergui, H. & E. Pattee, 1993. Fungal and invertebrate colonization of Salix fresh and dry leaves in a Moroccan river system. Archiv für Hydrobiologie 127: 57–72.

    Google Scholar 

  • Collier, K. J. & M. J. Winterbourn, 1986. Processing of willow leaves in two suburban streams in Christchurch, New Zealand. New Zealand Journal of Marine and Freshwater Research 20: 575–582.

    Article  Google Scholar 

  • Dang, C. K., M. Schindler, E. Chauvet & M. O. Gessner, 2009. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 90: 122–131.

    Article  PubMed  Google Scholar 

  • Dangles, O. & F. Guérold, 2001. Influence of shredders in mediating breakdown rates of beech leaves in circumneutral and acidic forest streams. Archiv für Hydrobiologie 151: 649–666.

    Google Scholar 

  • Dangles, O., F. Guérold & P. Usseglio-Polatera, 2001. The role of transported particulate organic matter in the macroinvertebrate colonization of litter bags in streams. Freshwater Biology 46: 575–586.

    Article  CAS  Google Scholar 

  • Daufresne, M., M. C. Roger, H. Capra & N. Lamouroux, 2004. Long-term changes within the invertebrate and fish communities of the Upper Rhone River: effects of climatic factors. Global Change Biology 10: 124–140.

    Article  Google Scholar 

  • Elliott, J. M., 1987. Temperature-induced changes in the life cycle of Leuctra nigra (Plecoptera: Leuctridae) from a Lake District stream. Freshwater Biology 18: 177–184.

    Article  Google Scholar 

  • Fernandes, I., B. Uzun, C. Pascoal & F. Cassio, 2009. Responses of aquatic fungal communities on leaf litter to temperature-change events. International Review of Hydrobiology 94: 410–418.

    Article  Google Scholar 

  • Ferreira, V. & E. Chauvet, 2011a. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17: 551–564.

    Article  Google Scholar 

  • Ferreira, V. & E. Chauvet, 2011b. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 167: 279–291.

    Article  PubMed  Google Scholar 

  • Fjellheim, A., 1996. Distribution of benthic invertebrates in relation to stream flow characteristics in a Norwegian river. Regulated Rivers – Research and Management 12: 263–271.

    Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Graça, M. A. S. & C. Cressa, 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review of Hydrobiology 95: 27–41.

    Article  Google Scholar 

  • Graça, M. A. S., L. Maltby & P. Calow, 1993. Importance of fungi in the diet of Gammarus pulex and Asselus aquaticus. 1. Feeding strategies. Oecologia 93: 139–144.

    Google Scholar 

  • Graça, M. A. S., R. C. F. Ferreira & C. N. Coimbra, 2001. Processing along a stream gradient: the role of invertebrates and decomposers. The North American Benthological Society 20: 408–420.

    Article  Google Scholar 

  • Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.

    Article  PubMed  Google Scholar 

  • Hieber, M. & M. O. Gessner, 2002. Contribution of stream detritivores, fungi and bacteria to leaf breakdown based on biomass estimates. Ecology 83: 1026–1038.

    Article  Google Scholar 

  • Hill, W. R., M. G. Ryon & E. M. Schilling, 1995. Light limitation in a stream ecosystem: Responses by primary producers and consumers. Ecology 76: 1297–1309.

    Article  Google Scholar 

  • Hill, W. R., P. J. Mulholland & E. R. Marzolf, 2001. Stream ecosystem responses to forest leaf emergence in spring. Ecology 82: 2306–2319.

    Article  Google Scholar 

  • Imberger, S. J., C. J. Walsh & M. R. Grace, 2008. More microbial activity, not abrasive flow or shredder abundance, accelerates breakdown of labile leaf litter in urban streams. Journal of the North American Benthological Society 27: 549–561.

    Article  Google Scholar 

  • Irons, J. G., M. W. Oswood, R. J. Stout & C. M. Pringle, 1994. Latitudinal patterns in leaf litter breakdown—is temperature really important. Freshwater Biology 32: 401–411.

    Article  Google Scholar 

  • Knopp, M. & R. Cormier, 1997. Mayflies: An Angler’s Study of Trout Water Ephemeroptera. Greycliff Publishing Company, Helena.

    Google Scholar 

  • MacDonald, E. E. & B. R. Taylor, 2008. Factors influencing litter decomposition rates in upstream and downstream reaches of river systems in eastern Canada. Fundamental and Applied Limnology 172: 71–86.

    Article  CAS  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing & R. L. Vannote, 1983. Interbiome comparison of stream ecosystem dynamics. Ecological Monographs 53: 1–25.

    Article  Google Scholar 

  • Minshall, G. W., K. W. Cummins, R. C. Petersen, C. E. Cushing, D. A. Bruns, J. R. Sedell & R. L. Vannote, 1985. Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences 42: 1045–1055.

    Article  Google Scholar 

  • Paril, P., J. Bojkova, J. Spacek & J. Helesic, 2008. Ecology of Leuctra geniculata (Plecoptera: Leuctridae), an atlantomediterranean species on the north-eastern border of its area. Biologia 63: 574–581.

    Article  Google Scholar 

  • Peckarsky, B. L., P. R. Fraissinet, M. A. Penton & D. J. Conklin Jr, 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca.

    Google Scholar 

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.

    Article  Google Scholar 

  • Rajashekar, M. & K. M. Kaveriappa, 2000. Effects of temperature and light on growth and sporulation of aquatic hyphomycetes. Hydrobiologia 441: 149–153.

    Article  Google Scholar 

  • Stewart, K. W. & B. P. Stark, 1993. Nymphs of North American Stonefly Genera (Plecoptera). University of North Texas Press, Denton.

    Google Scholar 

  • Stockley, R. A., G. S. Oxford & R. F. G. Ormond, 1998. Do invertebrates matter? Detrital processing in the River Swale-Ouse. Science of the Total Environment 210: 427–435.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournand & P. Usseglio-Polatera, 2006. Invertébrés d’eau douce: systématique, biologie, écologie. CNRS Éditions, Paris.

    Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.

    Article  Google Scholar 

  • Tiegs, S. D., P. O. Okinwole & M. O. Gessner, 2009. Litter decomposition across multiple spatial scales in stream networks. Oecologia 161: 343–351.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.

    Article  Google Scholar 

  • Whiles, M. R., J. B. Wallace & C. Keun, 1993. The influence of Lepidostoma (Trichoptera: Lepidostomatidae) on recovery of leaf-litter processing in disturbed headwater stream. American Midland Naturalist 130: 356–363.

    Article  Google Scholar 

  • Wiggins, G. B., 2000. Larvae of the North American Caddisfly Genera (Trichoptera), 2nd ed. University of Toronto Press, Toronto.

    Google Scholar 

  • Wiggins, G. B. & R. J. Mackay, 1978. Some relationships between systematics and trophic ecology in Nearctic aquatic insects, with special reference to Trichoptera. Ecology 59: 1211–1220.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Rolv Kristiansen, Høgskolen i Bødo, and Argus Miljø Environmental Services for their gracious support, logistic and cultural, during the experiments in Norway. Summer students E. MacDonald and M. Hines provided invaluable assistance with field work and invertebrate enumerations. Finally, careful and thorough reviews by two anonymous reviewers substantially improved the manuscript. This research was supported by the Canadian Foundation for Innovation (CFI), Natural Sciences and Engineering Research Council of Canada (NSERC) and St. Francis Xavier University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry R. Taylor.

Additional information

Handling editor: Sonja Stendera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, B.R., Andrushchenko, I.V. Interaction of water temperature and shredders on leaf litter breakdown: a comparison of streams in Canada and Norway. Hydrobiologia 721, 77–88 (2014). https://doi.org/10.1007/s10750-013-1650-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1650-2

Keywords

Navigation