Skip to main content

Advertisement

Log in

Can moderate increases in nutrient loads cause ecological effects in rivers already impacted by nutrients?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Predicting the ecological responses to moderate nutrient additions in systems that are already impacted to some degree by nutrient inputs is an important management task. In this study, we have investigated the responses of phytoplankton and periphyton and macroinvertebrate assemblages to experimental nutrient additions using both laboratory and field bioassays. We looked at six lower river reach/upper estuary sites in two flow seasons (high flow and low flow) in the Glenelg Hopkins Region of Victoria, Australia. Despite the considerable differences in the physical and chemical environments between sites in this study, the results suggest that within the lower river reaches of the Glenelg Hopkins region all systems are likely to have the potential for nutrient limitation. Also, addition of moderate and realistic loads of nutrients are likely to cause ecological changes, including a reduction in diversity H′, increases or decreases in algal growth and increases in densities of consumers. Incorporating this information into land use suitability options for the area will provide mangers an insight into potential outcomes relating to river health in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ANZECC, 2000. Australian and New Zealand Environmental Conservation Council (ANZECC) and the Agriculture and Resource Management Council of Australia and New Zealand Guidelines for Fresh and Marine Water Quality.

  • Baldwin, D. S., G. N. Rees, M. Edwards & A. I. Robertson, 2003. A simple, reproducible substrate for studying biofilms in aquatic environments. Environmental Technology 24: 711–717.

    Article  CAS  PubMed  Google Scholar 

  • Beardall, J., E. Young & S. Roberts, 2001. Approaches for determining phytoplankton limitation. Aquatic Sciences 63: 44–69.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F. & R. A. Smith, 2002. Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnology and Oceanography 47(4): 1175–1186.

    Article  CAS  Google Scholar 

  • Bowman, M. F., P. A. Chambers & D. W. Schindler, 2005. Epilithic algal abundance in relation to anthropogenic changes in phosphorus. Canadian Journal of Fisheries and Aquatic Sciences 62: 174–184.

    Article  CAS  Google Scholar 

  • Bowman, M. F., P. A. Chambers & D. W. Schindler, 2007. Constraints on benthic algal response to nutrient addition in oligotrophic mountain rivers. River Research and Applications 23: 858–876.

    Article  Google Scholar 

  • Chapman, P. M., 1996. Presentation and interpretation of sediment quality triad data. Ecotoxicology 5: 327–339.

    Article  CAS  PubMed  Google Scholar 

  • Conley, D. J., 2000. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410: 87–96.

    Article  Google Scholar 

  • Connon, R. E., J. Geist & I. Werner, 2012. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12: 12741–12771.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dodds, W. K. & E. B. Welch, 2000. Establishing nutrient criteria in streams. Journal of the North American Benthological Society 19: 186–196.

    Article  Google Scholar 

  • Dortch, Q. & T. E. Whitledge, 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research 12(11): 1293–1309.

    Article  Google Scholar 

  • Domingues, R. B., A. B. Barbosa, U. Sommer & H. M. Galvão, 2011. Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquatic Sciences 71: 331–343.

    Article  Google Scholar 

  • Downing, J. A., C. W. Osenberg & O. Sarnelle, 1999. Meta-analysis of marine nutrient-enrichment experiments: variation in the magnitude of nutrient limitation. Ecology 80: 1157–1167.

    Article  Google Scholar 

  • DSE, 2005. Index of Stream Condition: The Second Benchmark of Victorian River Condition. Victorian Government Department of Sustainability and Environment Melbourne, August 2005: 80 pp.

  • Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.

    Article  PubMed  Google Scholar 

  • EPA, U.S., 2001. Nutrient Criteria. Technical Guidance Manual. Estuarine and Coastal Marine Waters. U.S. Environmental Protection Agency, Washington.

    Google Scholar 

  • Eppley, R. W., J. N. Rogers & J. J. MCarthy, 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnology and Oceanography 14(6): 912–920.

    Article  CAS  Google Scholar 

  • Feminella, J. W. & C. P. Hawkins, 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of the North American Benthological Society 14: 465–509.

    Article  Google Scholar 

  • Fink, P. & E. Von Elert, 2006. Physiological responses to stoichiometric constraints: nutrient limitation and compensatory feeding in a freshwater snail. Oikos 115: 484–494.

    Article  CAS  Google Scholar 

  • Flemer, D. A. & M. A. Champ, 2006. What is the future fate of estuaries given over-enrichment, freshwater diversion and low flows? Marine Pollution Bulletin 52: 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Francoeur, S. N., B. J. F. Biggs, R. A. Smith & R. L. Lowe, 1999. Nutrient limitation of algal biomass accrual in streams: seasonal patterns and a comparison of methods. Journal of North American Benthological Society 18: 242–260.

    Article  Google Scholar 

  • GESAMP, 2001. Protecting the Oceans from Land Based Activities – Land-Based Sources and Activities Affecting the Quality and Uses of the Marine and Coastal and Associated Freshwater Environment. Rep. No. 71. GESAMP (IMO/FAO/UNESCO-IOC/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection) and Advisory Committee on Protection of the Sea.

  • Giling, D. P. P., Reich & R. M. Thompson, 2012. Riparian vegetation removal alters consumer resource stoichiometry in an Australian lowland stream. Marine & Freshwater Research 63: 1–8.

    Article  Google Scholar 

  • Glenelg Hopkins CMA, 2002. Health of the Catchment Report. Glenelg Hopkins Catchment Management Authority, Hamilton.

  • Glibert, P. M., 2010. Long-term changes in nutrient loading and stoichiometry and their relationships with changes in the food web and dominant pelagic fish species in the San Francisco Estuary, California. Reviews in Fisheries Science 18(2): 211–232.

    Article  Google Scholar 

  • Glibert, P. M., 2012. Ecological stoichiometry and its implications for aquatic ecosystem sustainability. Current Opinion in Environmental Sustainability 4: 272–277.

    Article  Google Scholar 

  • Glibert, P. M., D. C. Hinkle, B. Sturgis & R. V. Jesien, 2014. Eutrophication of a Maryland/Virginia coastal lagoon: a tipping point, ecosystem changes, and potential causes. Estuaries and Coasts 37(S1): S128–S146.

    Article  Google Scholar 

  • Heckey, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography 33(4, Part 2): 196–822.

    Google Scholar 

  • Hillebrand, H. & M. Kahlert, 2001. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnology and Oceanography 46: 1881–1898.

    Article  CAS  Google Scholar 

  • Holmes, G. 2002. Glenelg-Hopkins catchment nutrient management plan. A framework for reducing nutrient loads and the increasing occurrence of algal blooms in regional waters. Glenelg-Hopkins Catchment Management Authority, Hamilton, ISBN 0759410186.

  • Ierodiaconou, D., L. Laurenson, M. Leblanc, F. Stagnitti, G. Duff, S. Salzman & V. Versace, 2005. The consequences of land use change on nutrient exports: a regional scale assessment in south-west Victoria, Australia. Journal of Environmental Management 74: 305–316.

    Article  PubMed  Google Scholar 

  • Justic, D., N. N. Rabalias, R. E. Turner & Q. Dortch, 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine and Coastal Shelf Science 40: 339–356.

    Article  CAS  Google Scholar 

  • Keppel, G. 1982. Design and Analysis. A Researchers Handbook, 2nd edn. Prentice Hall Inc, Engelwood Cliffs, NJ.

  • Lange, K., A. Liess, J. Piggott, C. R. Townsend & C. D. Matthaei, 2011. Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshwater Biology 56: 264–278.

    Article  Google Scholar 

  • Lemoine, N. P., S. T. Giery & D. E. Burkepile, 2014. Differing nutritional constraints of consumers across ecosystems. Oecologia 174: 1367–1376.

    Article  PubMed  Google Scholar 

  • Lohman, K., J. R. Jones & B. D. Perkins, 1992. Effects of nutrient enrichment and flood frequency on periphyton biomass in northern Ozark streams. Canadian Journal of Fisheries and Aquatic Sciences 49: 1198–1205.

    Article  Google Scholar 

  • Malzahn, A. M., F. Hantzsche, K. L. Schoo, M. Boersma & N. Aberle, 2010. Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162: 35–48.

    Article  PubMed  Google Scholar 

  • Mariñelarena, A. J. & H. D. Di Giorgi, 2001. Nitrogen and phosphorus removal by periphyton from agricultural wastes in artificial streams. Journal of Freshwater Ecology 16(3): 347–353.

    Article  Google Scholar 

  • Newall, P. & D. Tiller, 2002. Derivation of nutrient guidelines for streams in Victoria, Australia. Environmental Monitoring and Assessment 74: 85–103.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson G. & A. Longmore, 2008. Nutrient Fluxes and Trophic Status of the Surry River Estuary During February and May 2007. Rep. No. 89. Fisheries Research Branch, Department of Primary Industries, Queenscliff.

  • Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes and future concerns. Ophelia 42: 199–219.

    Article  Google Scholar 

  • Nogueira, P. R. B., Domingues & A. B. Barbosa, 2014. Are microcosm volume and sample pre-filtration relevant to evaluate phytoplankton growth? Journal of Experimental Marine Biology and Ecology 461: 323–330.

    Article  Google Scholar 

  • Persic, V., J. Horvatic, E. Has-Schon & I. Bogut, 2009. Changes in N and P limitation induced by water level fluctuations in Nature Park Kopacki Rit (Croatia): nutrient enrichment bioassay. Aquatic Ecology 43: 27–36.

    Article  CAS  Google Scholar 

  • Posey, M. H., T. D. Alphin & L. Cahoon, 2006. Benthic community responses to nutrient enrichment and predator exclusion: Influence of background nutrient concentrations and interactive effects. Journal of Experimental Marine Biology and Ecology 330: 105–118.

    Article  CAS  Google Scholar 

  • Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Science 46: 205–221.

    CAS  Google Scholar 

  • Ren, L., N. Rabalais, R. E. Turner, W. Morrison & W. Mendenhall, 2009. Nutrient limitation on phytoplankton growth in the upper Barataria basin, Louisiana: microcosm bioassays. Estuaries and Coasts 32: 958–974.

    Article  CAS  Google Scholar 

  • Roberts, D. A., E. L. Johnston, S. Muller & A. G. B. Poore, 2008. Field and laboratory simulations of storm water pulses: behavioural avoidance by marine epifauna. Environmental Pollution 152: 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.

    Article  CAS  PubMed  Google Scholar 

  • Spivak, A. C., M. J. Vanni & E. M. Mette, 2011. Moving on up: can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshwater Biology 56: 279–291.

    Article  Google Scholar 

  • Sterner, R. W., & J. J. Elser, 2008. Ecological stoichiometry: overview. In: Jorgensen, S. E. & B. D. Fath (eds), Encyclopedia of Ecology, 1st edn. Elsevier B. V., Oxford.

  • Stevenson, R. J., S. T. Rier, C. M. Riseng, R. E. Schultz & M. J. Wiley, 2006. Comparing effects of nutrients on algal biomass in streams in two regions with different disturbance regimes and with applications for developing nutrient criteria. Hydrobiologia 561: 149–165.

    Article  CAS  Google Scholar 

  • Wagg, C., 1999. Development of the Catchment Management Support System (CMSS) in the Glenelg Hopkins CMA. Department of Natural Resources and Environment.

  • Worm, B., T. B. H. Reusch & H. K. Lotze, 2000. In situ nutrient enrichment: methods for marine benthic ecology. International Reviews in Hydrobiology 85: 359–375.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Action Plan through the Glenelg Hopkins CMA and undertaken at the Department of Primary Industries in Queenscliff, Victoria. We are grateful to the following people for assistance in the field and laboratory; S. Blake, S. Heislers, S. Dudas, C. Rees, A. Plummer and T. Sheehan. A. Longmore provided advice and assistance at all stages of this project, and A.O’Brien, S.Long, J. Myers and J. Morris and several anonymous reviewers have read and improved initial drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liz Morris.

Additional information

Handling editor: Verónica Ferreira

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, L., Nicholson, G. Can moderate increases in nutrient loads cause ecological effects in rivers already impacted by nutrients?. Hydrobiologia 749, 213–229 (2015). https://doi.org/10.1007/s10750-014-2168-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2168-y

Keywords

Navigation