Skip to main content
Log in

At the extreme of physical gradients: phytoplankton in highly flushed, large rivers

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phytoplankton and associated environmental factors were collected fortnightly during a 1-year cycle in the upper and lower reaches of the River Adige (northeastern Italy). The river has a typical Alpine flow, with the period of high flow and flooding occurring in the spring and summer months. Phytoplankton biomass was constrained by physical variables, mainly water discharge and associated variables directly linked to water fluxes. These factors acted negatively and synchronously by diluting phytoplankton cells and worsening the light regime. Nutrient concentrations did not appear to limit phytoplankton growth. Compared to many other central European rivers, the very low maximum algal biomasses supported by River Adige (Chl a < 7 μg l−1) are due to the Alpine flow regime, which is characterised by higher flow during the warmer months, when conditions for algal development are more favourable. Hydrology and flow regime, along with the channelisation of the river, caused development of a simplified phytoplankton community, which was almost exclusively composed of diatoms. Moreover, these factors contributed significantly to the lack of ordered and cyclic temporal patterns in phytoplankton dynamics. In fact, the gradient of species composition showed a strong association with hydrological factors. If the scenarios predicting increase of atmospheric temperatures and decrease of atmospheric precipitations and water availability in the regions south of the Alps are realistic, algal biomasses may rise and be associated with an increase of groups other than diatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Améziane, T., A. Dauta & R. Le Cohu, 2003. Origin and transport of phytoplankton in a large river: the Garonne, France. Archiv für Hydrobiologie 156: 385–404.

    Article  Google Scholar 

  • APHA, AWWA & WEF, 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington.

  • Basu, B. K. & F. R. Pick, 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology and Oceanography 41: 1572–1577.

    Article  CAS  Google Scholar 

  • Bellin, A. & D. Zardi, 2004. Analisi climatologica di serie storiche delle precipitazioni e temperature in Trentino. Quaderni di Idronomia Montana, 23. Editoriale BIOS, Castrolibero (CS), Italy.

  • Bothár, A. & K. T. Kiss, 1990. Phytoplankton and zooplankton (Cladocera, Copepoda) relationship in the eutrophicated River Danube (Danubialia Hungarica, CXI). Hydrobiologia 191: 165–171.

    Article  Google Scholar 

  • Casper, A. F. & J. H. Thorp, 2007. Diel and lateral patterns of zooplankton distribution in the St. Lawrence River. River Research and Applications 23: 73–85.

    Article  Google Scholar 

  • Chételat, J., F. R. Pick & P. B. Hamilton, 2006. Potamoplankton size structure and taxonomic composition: influence of river size and nutrient concentrations. Limnology and Oceanography 51: 681–689.

    Google Scholar 

  • Desortová, B., A. Prange & P. Punčochář, 1996. Chlorophyll-a concentrations along the River Elbe. Archiv fur Hydrobiologie Supplement 113, Large Rivers 10: 203–210.

    Google Scholar 

  • Downing, J. A., S. B. Watson & E. McCauley, 2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1905–1908.

    Article  Google Scholar 

  • Egiatti, G. & S. Cremonese, 2006. Considerazioni sulla scala di deflusso del Fiume Adige a Boara Pisani. ARPAV – Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto. U.O. Rete Idrografica Regionale 01/06.

  • Ferrari, I., S. Viglioli, P. Viaroli & G. Rossetti, 2006. The impact of the drought event of summer 2003 on the zooplankton of the Po River (Italy). Verhandlungen - Internationale Vereinigung für Theoretische und Angewandte Limnologie 29: 2143–2149.

    Google Scholar 

  • Garnier, J., G. Billen & M. Coste, 1995. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: observations and modeling. Limnology and Oceanography 40: 750–765.

    CAS  Google Scholar 

  • Goslee, S. C. & D. L. Urban, 2007. The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software 22(7): 1–19.

    Google Scholar 

  • Gosselain, V., J.-P. Descy, L. Viroux, C. Joaquim-Justo, A. Hammer, A. Métens & S. Schweitzer, 1998. Grazing by large river zooplankton: a key to summer potamoplankton decline? The case of the Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia 369(370): 199–216.

    Article  Google Scholar 

  • Green, R. H., 1979. Sampling design and statistical methods for environmental biologists. Wiley, New York.

    Google Scholar 

  • Harris, G. P., 1983. Mixed layer physics and phytoplankton populations: studies in equilibrium and non-equilibrium ecology. Progress Phycological Research 2: 1–52.

    Google Scholar 

  • Harris, G. P., 1986. Phytoplankton ecology: structure, function and fluctuation. Chapman and Hall, London.

    Google Scholar 

  • Havel, J. E., K. A. Medley, K. D. Dickerson, T. R. Angradi, D. W. Bolgrien, P. A. Bukaveckas & T. M. Jicha, 2009. Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia 628: 121–135.

    Article  Google Scholar 

  • Heiskary, S. & H. Markus, 2001. Establishing relationships among nutrient concentrations, phytoplankton abundance, and biochemical oxygen demand in Minnesota, USA, rivers. Lake and Reservoir Management 17: 251–267.

    Article  CAS  Google Scholar 

  • IPCC, 2007. Climate Change 2007: The Physical Science Basis. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Köhler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading–an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Kelly, M. G. & B. A. Whitton, 1998. Biological monitoring of eutrophication in rivers. Hydrobiologia 384: 55–67.

    Article  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Komárek, J. & B. Fott, 1983. Chlorophyceae (Grünalgen). Ordnung: Chlorococcales. In: Huber-Pestalozzi - Das. Phytoplankton des Süßwassers. Systematik und Biologie 7 Teil, 1 Hälfte. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

  • Kristensen, P. & H. O. Hansen (eds), 1994. European Rivers and Lakes. Assessment of Their Environmental State. European Environment Agency, EEA Environmental Monographs 1, Copenhagen.

  • Legendre, P. & L. Legendre, 1998. Numerical ecology, 2nd English ed. Elsevier Science BV, Amsterdam.

  • Lewis, W. M. & W. A. Wurtsbaugh, 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiology 93: 446–465.

    Article  CAS  Google Scholar 

  • Lewis, W. M., S. K. Hamilton, M. A. Lasi, M. Rodríguez & J. F. Saunders III, 2000. Ecological Determinism on the Orinoco Floodplain. BioScience 50: 681–692.

    Article  Google Scholar 

  • Mitrovic, S. M., L. C. Bowling & R. T. Buckney, 2001. Vertical disentrainment of Anabaena circinalis in the turbid, freshwater Darling River, Australia: quantifying potential benefits from buoyancy. Journal of Plankton Research 23: 47–55.

    Article  Google Scholar 

  • OECD, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. OECD, Paris.

    Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2008. vegan: Community Ecology Package. R package version 1.15-1 [available on internet at http://cran.r-project.org/, http://vegan.r-forge.r-project.org/].

  • Phillips, G., O.-P. Pietiläinen, L. Carvalho, A. Solimini, A. Lyche Solheim & A. C. Cardoso, 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.

    Article  CAS  Google Scholar 

  • R Development Core Team, 2008. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 [available on internet at http://www.R-project.org].

  • Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 388–433.

    Google Scholar 

  • Reynolds, C. S., 1999. Non-determinism to probability, or N:P in the community ecology of phytoplankton. Archiv für Hydrobiologie 146: 23–35.

    CAS  Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S. & J.-P. Descy, 1996. The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie Supplement 113, Large Rivers 10: 161–187.

    Google Scholar 

  • Richardson, W. B., E. A. Strauss, L. A. Bartsch, E. M. Monroe, J. C. Cavanaugh, L. Vingum & D. M. Soballe, 2004. Denitrification in the Upper Mississippi River: rates, controls, and contribution to nitrate flux. Canadian Journal of Fisheries and Aquatic Sciences 61: 1102–1112.

    Article  CAS  Google Scholar 

  • Rossetti, G., P. Viaroli & I. Ferrari, 2008. Role of abiotic and biotic factors in structuring the metazoan plankton community in a lowland river. River Research and Applications. doi:10.1002/rra.1170.

  • Rossi, D. & R. Veltri, 2007. Come abbiamo fronteggiato l’emergenza idrica. Adige-Etsch. Periodico trimestrale a cura dell’Autorità di Bacino del Fiume Adige. Ottobre 07: 15–19.

    Google Scholar 

  • Rott, E., N. Salmaso & E. Hoehn, 2007. Quality control of Utermöhl based phytoplankton biovolume estimates—an easy task or a Gordian knot? Hydrobiologia 578: 141–146.

    Article  Google Scholar 

  • Ruse, L. P. & A. J. Hutchings, 1996. Phytoplankton composition of the River Thames in relation to certain environmental variables. Archiv für Hydrobiologie Supplement 113, Large Rivers 10: 189–201.

    Google Scholar 

  • Salmaso, N., 2003. Life strategies, dominance patterns and mechanisms promoting species coexistence in phytoplankton communities along complex environmental gradients. Hydrobiologia 502: 13–36.

    Article  Google Scholar 

  • Salmaso, N. & G. Braioni, 2008. Factors controlling the seasonal development and distribution of the phytoplankton community in the lowland course of a large river in Northern Italy (River Adige). Aquatic Ecology 42: 533–545.

    Article  CAS  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Sellers, T. & P. A. Bukaveckas, 2003. Phytoplankton production in a large, regulated river: a modeling and mass balance assessment. Limnology and Oceanography 48: 1476–1487.

    Article  Google Scholar 

  • Sherman, B. S., I. T. Webster, G. J. Jones & R. L. Olivier, 1998. Transitions between Aulacoseira and Anabaena in a turbid river weir pool. Limnology and Oceanography 43: 1902–1915.

    CAS  Google Scholar 

  • Skidmore, R. E., S. C. Maberly & B. A. Whitton, 1998. Patterns of spatial and temporal variation in phytoplankton chlorophyll a in the River Trent and its tributaries. The Science of the Total Environment 210(211): 357–365.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd ed. Freeman & Company, New York.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archive für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Stoyneva, M., 1994. Shallows of the lower Danube as additional sources of potamoplankton. Hydrobiologia 289: 97–108.

    Article  Google Scholar 

  • Thorp, J. H., A. R. Black, K. H. Haag & J. D. Wehr, 1994. Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Canadian Journal of Fisheries and Aquatic Sciences 51: 1634–1643.

    Article  Google Scholar 

  • Van Nieuwenhuyse, E. E. & J. R. Jones, 1996. Phosphorus-chlorophyll relationship in temperate streams and its variation with stream catchment area. Canadian Journal of Fisheries and Aquatic Sciences 53: 99–105.

    Article  Google Scholar 

  • Wehr, J. D. & J.-P. Descy, 1998. Use of phytoplankton in large river management. Journal of Phycology 34: 741–749.

    Article  Google Scholar 

  • Young, K., G. K. Morse, M. D. Scrimshaw, J. H. Kinniburgh, C. L. MacLeod & J. N. Lester, 1999. The relation between phosphorus and eutrophication in the Thames catchment, UK. Science of the Total Environment 228: 157–183.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was co-funded by the Basin Authority of River Adige. Chemical analyses were carried out at the Environmental Agency of the Trentino Province. Samplings were carried out with the logistic support of the Environmental Agencies of Bolzano and Rovigo. We wish to thank the technical staff at our Institute for chemical and biological analyses, in particular Milva Tarter and Lorena Ress. We appreciate the help of Barbara Centis in identifying diatoms and supporting the field operations. The manuscript has benefitted from the constructive comments of Dr. W. Richardson (US Geological Survey) and of an anonymous reviewer. This study was presented as a contributed article at the Bat Sheva de Rothschild seminar on Phytoplankton in the Physical Environment—The 15th Workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP), Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Salmaso.

Additional information

Guest editors: T. Zohary, J. Padisák & L. Naselli-Flores / Phytoplankton in the Physical Environment: Papers from the 15th Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP), held at the Ramot Holiday Resort on the Golan Heights, Israel, 23–30 November 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmaso, N., Zignin, A. At the extreme of physical gradients: phytoplankton in highly flushed, large rivers. Hydrobiologia 639, 21–36 (2010). https://doi.org/10.1007/s10750-009-0018-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0018-0

Keywords

Navigation