Skip to main content
Log in

Effect of main-stem dams on zooplankton communities of the Missouri River (USA)

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The persistence of plankton in flowing water presents an enigma, i.e., how can populations be sustained while constantly losing individuals downriver? We examined the distribution and abundance of zooplankton from 146 sites on the Missouri River (USA) and found large shifts in the dominance of major taxa between management zones of this regulated river. Crustacean zooplankton were dominant in the inter-reservoir zone of the river, and their taxonomic composition was similar to regional lakes and reservoirs. The exponential decline of cladocerans and copepods with distance from main-stem dams suggests that conditions within the river are adverse to population growth and that reservoirs are the main source of these crustaceans in the river. Rotifers dominated in the channelized zone of the river. High algal biomass and rapid population growth rates likely allow persistence of rotifers in segments of the river that do not receive direct reservoir inputs. Rotifers were less abundant in the inter-reservoir zone, suggesting that their numbers are limited by internal processes, such as food or predators. Since zooplankton are known to be an important food for larval fishes in rivers, this shift of major taxa in regulated rivers has implications for river food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya, K., J. D. Jack & P. A. Bukaveckas, 2005. Dietary effects on life history traits of riverine Bosmina. Freshwater Biology 50: 965–975.

    Article  CAS  Google Scholar 

  • Acharya, K., P. A. Bukaveckas, J. D. Jack, M. Kyle & J. J. Elser, 2006. Consumer growth linked to diet and RNA-P stoichiometry: response of Bosmina to variation in riverine food resources. Limnology and Oceanography 51: 1859–1869.

    CAS  Google Scholar 

  • Allan, J. D., 1976. Life history patterns in zooplankton. The American Naturalist 110: 165–180.

    Article  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream ecology: structure and function of running waters, 2nd ed. Springer, Berlin.

    Google Scholar 

  • Angradi, T. R. (ed.), 2006. Environmental monitoring and assessment program, Great River ecosystems field operations manual. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC. Retrieved February 20, 2008, from www.epa.gov/emap/greatriver/.

  • Angradi, T. R., D. W. Bolgrien, T. M. Jicha, M. S. Pearson, B. H. Hill, D. L. Taylor, E. W. Schweiger, L. Shepard, A. R. Batterman, M. F. Moffett, C. M. Elonen & L. E. Anderson, 2008. A bioassessment approach for mid-continent great rivers: the Upper Mississippi, Missouri, and Ohio (USA). Environmental Monitoring and Assessment (in press).

  • APHA, 1998. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Baranyi, C., T. Hein, C. Holarek, S. Keckeis & F. Schiemer, 2002. Zooplankton biomass and community structure in a Danube river floodplain system: effects of hydrology. Freshwater Biology 47: 473–482.

    Article  Google Scholar 

  • Benke, A. C. & C. E. Cushing (eds), 2005. Rivers of North America. Elsevier Academic Press, Amsterdam.

    Google Scholar 

  • Brooks, J. L., 1959. Cladocera. In Edmondson, W. T. (ed.), Freshwater biology. Wiley, New York, NY: 587–656.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Cowell, B. C., 1967. The Copepoda and Cladocera of a Missouri River reservoir: a comparison of sampling in the reservoir and the discharge. Limnology and Oceanography 12: 125–136.

    Google Scholar 

  • Cowell, B. C., 1970. The influence of plankton discharges from an upstream reservoir on standing crops in a Missouri River reservoir. Limnology and Oceanography 15: 427–441.

    Google Scholar 

  • DeMelo, R. & P. D. N. Hebert, 1994. A taxonomic reevaluation of North American Bosminidae. Canadian Journal of Zoology 72: 1808–1825.

    Article  Google Scholar 

  • Dickerson, K. D., K. A. Medley & J. E. Havel, 2009. Spatial variation in zooplankton community structure is related to hydrologic flow units in the Missouri River, USA. River Research and Applications (in press).

  • Edmondson, W. T. (ed.), 1959. Freshwater biology, 2nd ed. Wiley, New York.

    Google Scholar 

  • Ferrari, I., A. Farabegoli & R. Mazzoni, 1989. Abundance and diversity of planktonic rotifers in the Po River. Hydrobiologia 186/187: 201–208.

    Article  Google Scholar 

  • Galat, D. L., C. R. Berry, W. M. Gardner, J. C. Hendrickson, G. E. Mestl, G. J. Power, C. Stone & M. R. Winston, 2005a. Spatiotemporal patterns and changes in Missouri River fishes. In Rinne, J. N., R. M. Hughes & R. Calamusso (eds), Historical changes in large river fish assemblages of the Americas. American Fisheries Society Symposium, Vol. 45, Bethesda, MD: 249–291.

  • Galat, D. L., C. R. Berry, E. J. Peters & R. G. White, 2005. Missouri River basin. In Benke, A. C. & C. E. Cushing (eds), Rivers of North America. Elsevier Academic Press, Amsterdam.

    Google Scholar 

  • Guelda, D. L., R. W. Koch, J. D. Jack & P. A. Bukaveckas, 2005. Experimental evidence for density-dependent effects and the importance of algal production in determining population growth rates of riverine zooplankton. River Research and Applications 21: 595–608.

    Article  Google Scholar 

  • Havel, J. E. & K. R. Pattinson, 2004. Spatial distribution and seasonal dynamics of plankton in a terminal multiple-series reservoir. Lake and Reservoir Management 20: 14–26.

    Article  Google Scholar 

  • Havel, J. E., J. B. Shurin & J. R. Jones, 2005. Environmental limits to a rapidly spreading exotic cladoceran. EcoScience 12: 376–385.

    Article  Google Scholar 

  • Hynes, H. B. N., 1970. The ecology of running waters. University of Toronto Press, Toronto.

    Google Scholar 

  • Jack, J. D. & J. H. Thorp, 2002. Impacts of fish predation on an Ohio River zooplankton community. Journal of Plankton Research 24: 119–127.

    Article  CAS  Google Scholar 

  • Jennings, D. K., 1979. An evaluation of aquatic habitat associated with notched dikes on the Missouri River, Missouri. University of Missouri-Columbia, Columbia.

    Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium, Vol. 106. Canadian Special Publication of Fisheries and Aquatic Sciences: 110–127.

  • King, A. J., 2004. Density and distribution of potential prey for larval fish in the main channel of a floodplain river: pelagic versus epibenthic meiofauna. River Research and Applications 20: 883–897.

    Article  Google Scholar 

  • Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.

    Article  Google Scholar 

  • Kofoid, C. A., 1903. The plankton of the Illinois River, 1894–1896, with introductory notes upon the hydrography of the Illinois River and its basin. Quantitative investigations and general results. Illinois State Laboratory of Natural History Bulletin 6: 95–629.

    Google Scholar 

  • Lair, N., 2006. A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Research and Applications 22: 567–593.

    Article  Google Scholar 

  • Levchuk, A. P., 2007. Zooplankton of the Upper Mississippi River: patterns of community structure and sampling methodology. Master of Science, University of Illinois, Urbana-Champaign.

  • Marzolf, G. R., 1990. Reservoirs as environments for zooplankton. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir limnology: ecological perspectives. Wiley, New York: 195–207.

    Google Scholar 

  • Pace, M. L., S. E. G. Findlay & D. Lints, 1992. Zooplankton in advective environments: the Hudson River community and a comparative analysis. Canadian Journal of Fisheries and Aquatic Sciences 49: 1060–1069.

    Article  Google Scholar 

  • Repsys, A. J. & G. D. Rogers, 1982. Zooplankton studies in the channelized Missouri River. In Larry Hesse, G. H., H. Lewis, S. Reetz & A. Schlesinger (eds), The middle Missouri River. The Missouri River Study Group, Norfolk, NE: 125–145.

    Google Scholar 

  • Saunders, J. F. I. & W. M. J. Lewis, 1988. Zooplankton abundance and transport in a tropical white-water river. Hydrobiologia 162: 147–155.

    Article  Google Scholar 

  • Saunders, J. F. III & W. M. J. Lewis, 1989. Zooplankton abundance in the lower Orinoco River, Venezuela. Limnology and Oceanography 34: 397–409.

    Article  Google Scholar 

  • Sellers, T. & P. A. Bukaveckas, 2003. Phytoplankton production in a large regulated river: a modeling and mass balance assessment. Limnology and Oceanography 48: 1476–1487.

    Google Scholar 

  • Shiel, R. J., J. F. Costelloe, J. R. W. Reid, P. Hudson & J. Powling, 2006. Zooplankton diversity and assemblages in arid zone rivers of the Lake Eyre Basin, Australia. Marina and Freshwater Research 57: 49–60.

    Article  Google Scholar 

  • Sluss, T. D., G. A. Cobbs & J. H. Thorp, 2008. Impact of turbulence on riverine zooplankton: a mesocosm experiment. Freshwater Biology 53: 1999–2010.

    Article  Google Scholar 

  • Smirnov, N. & Timms, B. 1983. A revision of the Australian Cladocera (Crustacea). Records of the Australian Museum 1: 1–132.

  • Soeken, L. A., 1998. The effect of turbidity on the distribution and life history of river zooplankton. Master’s Thesis, Southwest Missouri State University, Springfield, Missouri, USA.

  • Sparks, R. E., J. C. Nelson & Y. Yin, 1998. Naturalization of the flood regime in regulated rivers. Bioscience 48: 706–720.

    Article  Google Scholar 

  • Thorp, J. H. & S. Mantovani, 2005. Zooplankton of turbid and hydrologically dynamic prairie rivers. Freshwater Biology 50: 1474–1491.

    Article  Google Scholar 

  • Thorp, J. H., A. R. Black, K. H. Haag & J. D. Wehr, 1994. Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Canadian Journal of Fisheries and Aquatic Sciences 51: 1634–1643.

    Article  Google Scholar 

  • Van den Brink, F. W. B., M. M. Van Katwijk & G. Van der Velde, 1994. Impact of hydrology on phyto- and zooplankton community composition in floodplain lakes along the Lower Rhine and Meuse. Journal of Plankton Research 16: 351–373.

    Article  Google Scholar 

  • Wallace, R. L. & T. W. Snell, 2001. Rotifera. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego: 195–254.

    Chapter  Google Scholar 

  • Ward, J. V., 1975. Downstream fate of zooplankton from a hypolimnial release mountain reservoir. Internationale Vereinigung fur theoretische und angewandte Limnologie 19: 1798–1804.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology: lake and river ecosystems, 3rd ed. Academic Press, San Diego, California.

    Google Scholar 

  • Williamson, C. & J. W. Reed, 2001. Copepoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates. Academic Press, Inc, San Diego: 915–954.

    Chapter  Google Scholar 

  • Wilson, M. S. & H. C. Yeatman, 1959. Free-living copepoda. In Edmondson, W. T. (ed.), Freshwater biology. Wiley, New York, NY: 735–861.

    Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the U.S. Environmental Protection Agency, through its Environmental Monitoring and Assessment Program (EMAP, http://www.epa.gov/emap/) for Great River Ecosystems. A project of this scale would not have been possible without the assistance of many individuals. We especially thank the three field crews for collecting samples and physico-chemical data from the Missouri River, and Jason Wolf and Carla Atkinson (MSU) for sampling the tributaries. We also appreciate the many insights gained from our discussions with EMAP collaborators, particularly John Chick, Anthony Aufdenkampe, Dave Walters, and the late Jeffrey Jack. The paper benefited from the careful insights of three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Havel.

Additional information

Handling editor: S. I. Dodson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havel, J.E., Medley, K.A., Dickerson, K.D. et al. Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia 628, 121–135 (2009). https://doi.org/10.1007/s10750-009-9750-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9750-8

Keywords

Navigation