Skip to main content
Log in

Current status and future directions in pediatric ventricular assist device

  • Review
  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

A ventricular assist device (VAD) is a form of mechanical circulatory support that uses a mechanical pump to partially or fully take over the function of a failed heart. In recent decades, the VAD has become a crucial option in the treatment of end-stage heart failure in adult patients. However, due to the lack of suitable devices and more complicated patient profiles, this therapeutic approach is still not widely used for pediatric populations. This article reviews the clinically available devices, adverse events, and future directions of design and implementation in pediatric VADs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shaddy RE, George AT, Jaecklin T, Lochlainn EN, Thakur L et al (2018) Systematic literature review on the incidence and prevalence of heart failure in children and adolescents. Pediatr Cardiol 39:415–436. https://doi.org/10.1007/s00246-017-1787-2

    Article  PubMed  Google Scholar 

  2. Watanabe K, Shih R (2020) Update of pediatric heart failure. Pediatr Clin North Am 67:889–901. https://doi.org/10.1016/j.pcl.2020.06.004

    Article  PubMed  Google Scholar 

  3. DeBakey ME (1971) Left ventricular bypass pump for cardiac assistance. Clinical experience. Am J Cardiol 27

  4. Zafar F, Castleberry C, Khan MS, Mehta V, Bryant R 3rd et al (2015) Pediatric heart transplant waiting list mortality in the era of ventricular assist devices. J Heart Lung Transplant 34:82–88. https://doi.org/10.1016/j.healun.2014.09.018

    Article  PubMed  Google Scholar 

  5. Rossano JW, VanderPluym CJ, Peng DM, Hollander SA, Maeda K et al (2021) Fifth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2021.10.001

    Article  PubMed  Google Scholar 

  6. Wu EL, Stevens MC, Pauls JP, Steinseifer U (2018) Chapter 3 - First-generation ventricular assist devices. In:Gregory SD, Stevens MC, Fraser JF(ed) Mechanical circulatory and respiratory support. Academic Press, pp 93–115

  7. Graefe R, Groß-Hardt S (2018) Chapter 4 - Second-generation ventricular assist devices. In:Gregory SD, Stevens MC, Fraser JF(ed) Mechanical circulatory and respiratory support. Academic Press, pp 117–150

  8. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Eng J Med 345:1435–1443

    Article  CAS  Google Scholar 

  9. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Eng J Med 361:2241–2251. https://doi.org/10.1056/NEJMoa0909938

    Article  CAS  Google Scholar 

  10. Goldstein DJ, Naka Y, Horstmanshof D, Ravichandran AK, Schroder J et al (2020) Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: the multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol 5:411–419. https://doi.org/10.1001/jamacardio.2019.5323

    Article  PubMed  PubMed Central  Google Scholar 

  11. de By TMMH, Schweiger M, Hussain H, Amodeo A, Martens T et al (2022) The European Registry for Patients with Mechanical Circulatory Support (EUROMACS): third Paediatric (Paedi-EUROMACS) report. Eur J Cardiothorac Surg : Official Journal of the European Association For Cardio-thoracic Surgery 62. https://doi.org/10.1093/ejcts/ezac355

  12. Adachi I, Peng DM, Hollander SA, Simpson KE, Davies RR et al (2022) Sixth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2022.10.042

    Article  PubMed  Google Scholar 

  13. Lorts A, Smyth L, Gajarski RJ, VanderPluym CJ, Mehegan M et al (2020) The creation of a pediatric health care learning network: the ACTION quality improvement collaborative. ASAIO Journal (American Society For Artificial Internal Organs : 1992) 66:441–446. https://doi.org/10.1097/MAT.0000000000001133

    Article  PubMed  Google Scholar 

  14. Lorts A, Conway J, Schweiger M, Adachi I, Amdani S et al (2021) ISHLT consensus statement for the selection and management of pediatric and congenital heart disease patients on ventricular assist devices Endorsed by the American Heart Association. J Heart Lung Transplant 40:709–732. https://doi.org/10.1016/j.healun.2021.04.015

    Article  PubMed  Google Scholar 

  15. Shah R, Qayed E (2018) Outcomes and predictors of readmissions with GI bleeding in patients with left ventricular assist devices. South Med J 111:666–673. https://doi.org/10.14423/SMJ.0000000000000883

    Article  PubMed  Google Scholar 

  16. Kataria R, Jorde UP (2019) Gastrointestinal bleeding during continuous-flow left ventricular assist device support: state of the field. Cardiol Rev 27. https://doi.org/10.1097/CRD.0000000000000212

  17. Sharp MK, Gregg M, Brock G, Nair N, Sahetya S et al (2017) Comparison of blood viscoelasticity in pediatric and adult cardiac patients. Cardiovasc Eng Technol 8:182–192. https://doi.org/10.1007/s13239-017-0300-7

    Article  PubMed  Google Scholar 

  18. Aslam S (2018) Ventricular assist device infections. Cardiol Clin 36:507–517. https://doi.org/10.1016/j.ccl.2018.06.005

    Article  PubMed  Google Scholar 

  19. Bansal N, Auerbach SR, Shezad MF, Patel AB (2021) The initial analysis of infectious adverse events in pediatric ventricular assist devices reported to the Action Registry. actionlearningnetwork.org. https://www.actionlearningnetwork.org/wp-content/uploads/ISHLT-Abstract_Infection-Neha-Bansal.pdf. Accessed 13 Oct 2022

  20. Lichtenstein KM, Tunuguntla HP, Peng DM, Buchholz H, Conway J (2021) Pediatric ventricular assist device registries: update and perspectives in the era of miniaturized continuous-flow pumps. Ann Cardiothorac Surgery 10:329–338. https://doi.org/10.21037/acs-2020-cfmcs-18

    Article  Google Scholar 

  21. Kormos RL, McCall M, Althouse A, Lagazzi L, Schaub R et al (2017) Left ventricular assist device malfunctions: it is more than just the pump. Circulation 136:1714–1725. https://doi.org/10.1161/CIRCULATIONAHA.117.027360

    Article  PubMed  Google Scholar 

  22. Shah P, Yuzefpolskaya M, Hickey GW, Breathett K, Wever-Pinzon O et al (2022) Twelfth Interagency Registry for Mechanically Assisted Circulatory Support Report: readmissions after left ventricular assist device. Ann Thorac Surg 113:722–737. https://doi.org/10.1016/j.athoracsur.2021.12.011

    Article  PubMed  PubMed Central  Google Scholar 

  23. O’Connor MJ, Lorts A, Davies RR, Fynn-Thompson F, Joong A et al (2020) Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients and patients with congenital heart disease: a multicenter registry analysis. J Heart Lung Transplant 39:573–579. https://doi.org/10.1016/j.healun.2020.02.007

    Article  PubMed  Google Scholar 

  24. Morales DLS, Rossano JW, VanderPluym C, Lorts A, Cantor R et al (2019) Third Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report: preimplant characteristics and outcomes. Ann Thorac Surg 107:993–1004. https://doi.org/10.1016/j.athoracsur.2019.01.038

    Article  PubMed  Google Scholar 

  25. Castrodeza J, Ortiz-Bautista C, Fernández-Avilés F (2022) Continuous-flow left ventricular assist device: current knowledge, complications, and future directions. Cardiol J 29:293–304. https://doi.org/10.5603/CJ.a2021.0172

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morales DLS, Adachi I, Peng DM, Sinha P, Lorts A et al (2020) Fourth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report. Ann Thorac Surg 110:1819–1831. https://doi.org/10.1016/j.athoracsur.2020.09.003

    Article  PubMed  Google Scholar 

  27. Simpson KE, Kirklin JK, Cantor RS, Mehegan M, Lamour JM et al (2020) Right heart failure with left ventricular assist device implantation in children: an analysis of the Pedimacs registry database. J Heart Lung Transplant 39:231–240. https://doi.org/10.1016/j.healun.2019.11.012

    Article  PubMed  Google Scholar 

  28. Imamura T, Narang N, Kim G, Nitta D, Fujino T et al (2020) Aortic Insufficiency during HeartMate 3 left ventricular assist device support. J Card Fail 26:863–869. https://doi.org/10.1016/j.cardfail.2020.05.013

    Article  PubMed  Google Scholar 

  29. Zhang Q, Gao B, Yu C (2018) The effects of left ventricular assist device support level on the biomechanical states of aortic valve. Med Sci Monit 24:2003–2017. https://doi.org/10.12659/msm.906903

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lammers AE, Sprenger KS, Diller G-P, Miera O, Lebherz C et al (2021) Ventricular assist devices in paediatric cardiomyopathy and congenital heart disease: an analysis of the German National Register for Congenital Heart Defects. Int J Cardiol 343:37–44. https://doi.org/10.1016/j.ijcard.2021.08.047

    Article  PubMed  Google Scholar 

  31. VanderPluym CJ, Adachi I, Niebler R, Griffiths E, Fynn-Thompson F et al (2019) Outcomes of children supported with an intracorporeal continuous-flow left ventricular assist system. J Heart Lung Transplant 38:385–393. https://doi.org/10.1016/j.healun.2018.09.015

    Article  PubMed  Google Scholar 

  32. Auerbach SR, Simpson KE (2021) HVAD usage and outcomes in the current pediatric ventricular assist device field: an Advanced Cardiac Therapies Improving Outcomes Network (ACTION) Analysis. Asaio j 67:675–680. https://doi.org/10.1097/mat.0000000000001373

    Article  CAS  PubMed  Google Scholar 

  33. Nandi D, Auerbach SR, Bansal N, Buchholz H, Conway J et al (2023) Initial multicenter experience with ventricular assist devices in children and young adults with muscular dystrophy: an ACTION registry analysis. J Heart Lung Transplant 42:246–254. https://doi.org/10.1016/j.healun.2022.09.003

    Article  PubMed  Google Scholar 

  34. Criscione JC (2017) Cardiovascular devices: soft hugs for healing hearts. Nat Biomed Eng 1:0046. https://doi.org/10.1038/s41551-017-0046

    Article  Google Scholar 

  35. Conway J, Tunuguntla H (2020) Big devices in small patients: adapting adult ventricular assist devices for children. J Heart Lung Transplant 39:580–581. https://doi.org/10.1016/j.healun.2020.04.001

    Article  PubMed  Google Scholar 

  36. Mehra MR, Uriel N, Naka Y, Cleveland JC Jr, Yuzefpolskaya M et al (2019) A fully magnetically levitated left ventricular assist device - final report. N Engl J Med 380:1618–1627. https://doi.org/10.1056/NEJMoa1900486

    Article  PubMed  Google Scholar 

  37. Granegger M, Thamsen B, Schlöglhofer T, Lach S, Escher A et al (2020) Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. J Thorac Cardiovasc Surg 159:1519-1527.e1511. https://doi.org/10.1016/j.jtcvs.2019.06.084

    Article  CAS  PubMed  Google Scholar 

  38. Yarlagadda VV, Maeda K, Zhang Y, Chen S, Dykes JC et al (2017) Temporary circulatory support in U.S. children awaiting heart transplantation. J Am Coll Cardiol 70:2250–2260. https://doi.org/10.1016/j.jacc.2017.08.072

    Article  PubMed  Google Scholar 

  39. Conway J, Al-Aklabi M, Granoski D, Islam S, Ryerson L et al (2016) Supporting pediatric patients with short-term continuous-flow devices. J Heart Lung Transplant 35:603–609. https://doi.org/10.1016/j.healun.2016.01.1224

    Article  PubMed  Google Scholar 

  40. Cho J, Fuentes-Baldemar AA, Tunuguntla HP, Spinner JA, Tume SC et al (2023) Outcomes of temporary ventricular assist device: a pediatric institutional experience over 25 years. J Thorac Cardiovasc Surg 166. https://doi.org/10.1016/j.jtcvs.2022.10.041

  41. Lorts A, Eghtesady P, Mehegan M, Adachi I, Villa C et al (2018) Outcomes of children supported with devices labeled as “temporary” or short term: a report from the Pediatric Interagency Registry for Mechanical Circulatory Support. J Heart Lung Transplant 37:54–60. https://doi.org/10.1016/j.healun.2017.10.023

    Article  PubMed  Google Scholar 

  42. Lim JH, Kwak JG, Min J, Kwon HW, Song MK et al (2020) Experience with temporary centrifugal pump bi-ventricular assist device for pediatric acute heart failure: comparison with ECMO. Pediatr Cardiol 41:1559–1568. https://doi.org/10.1007/s00246-020-02412-0

    Article  PubMed  PubMed Central  Google Scholar 

  43. Weymann A, Foroughi J, Vardanyan R, Punjabi PP, Schmack B et al (2023) Artificial muscles and soft robotic devices for treatment of end-stage heart failure. Adv Mater (Deerfield Beach, Fla) 35:e2207390. https://doi.org/10.1002/adma.202207390

    Article  CAS  PubMed  Google Scholar 

  44. Roche ET, Horvath MA, Wamala I, Alazmani A, Song S-E et al (2017) Soft robotic sleeve supports heart function. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aaf3925

  45. Goldstein DJ, Naftel D, Holman W, Bellumkonda L, Pamboukian SV et al (2012) Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant 31:1151–1157. https://doi.org/10.1016/j.healun.2012.05.004

    Article  PubMed  Google Scholar 

  46. Fu Y, Hu L, Ruan X, Fu X (2015) A transcutaneous energy transmission system for artificial heart adapting to changing impedance. Artif Organs 39:378–387. https://doi.org/10.1111/aor.12384

    Article  PubMed  Google Scholar 

  47. Amodeo A, Filippelli S, Perri G, Iacobelli R, Adorisio R et al (2020) First human implantation of a miniaturized axial flow ventricular assist device in a child with end-stage heart failure. J Heart Lung Transplant 39:83–87. https://doi.org/10.1016/j.healun.2019.09.003

    Article  PubMed  Google Scholar 

  48. Waters BH, Park J, Bouwmeester JC, Valdovinos J, Geirsson A et al (2018) Electrical power to run ventricular assist devices using the Free-range Resonant Electrical Energy Delivery system. J Heart Lung Transplant 37:1467–1474. https://doi.org/10.1016/j.healun.2018.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang JX, Smith JR, Bonde P (2014) Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability. Ann Thorac Surg 97:1467–1474. https://doi.org/10.1016/j.athoracsur.2013.10.107

    Article  PubMed  Google Scholar 

  50. VanderPluym CJ, Cantor RS, Machado D, Boyle G, May L et al (2020) Utilization and outcomes of children treated with direct thrombin inhibitors on paracorporeal ventricular assist device support. ASAIO J (American Society For Artificial Internal Organs : 1992) 66:939–945. https://doi.org/10.1097/MAT.0000000000001093

    Article  CAS  Google Scholar 

  51. Yuzefpolskaya M, Schroeder SE, Houston BA, Robinson MR, Gosev I et al (2023) The Society of Thoracic Surgeons Intermacs 2022 annual report: focus on the 2018 Heart Transplant Allocation System. Ann Thorac Surg 115:311–327. https://doi.org/10.1016/j.athoracsur.2022.11.023

    Article  PubMed  Google Scholar 

  52. Cowger J, Pagani FD, Haft JW, Romano MA, Aaronson KD et al (2010) The development of aortic insufficiency in left ventricular assist device-supported patients. Circ Heart Fail 3:668–674. https://doi.org/10.1161/CIRCHEARTFAILURE.109.917765

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Nguyen KT, Ismail E, Donoghue L, Giridharan GA et al (2022) Effect of pulsatility on shear-induced extensional behavior of Von Willebrand factor. Artif Organs 46:887–898. https://doi.org/10.1111/aor.14133

    Article  PubMed  Google Scholar 

  54. Crow S, John R, Boyle A, Shumway S, Liao K et al (2009) Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg 137:208–215. https://doi.org/10.1016/j.jtcvs.2008.07.032

    Article  CAS  PubMed  Google Scholar 

  55. Kato TS, Chokshi A, Singh P, Khawaja T, Cheema F et al (2011) Effects of continuous-flow versus pulsatile-flow left ventricular assist devices on myocardial unloading and remodeling. Circ Heart Fail 4:546–553. https://doi.org/10.1161/CIRCHEARTFAILURE.111.962142

    Article  PubMed  PubMed Central  Google Scholar 

  56. Krabatsch T, Schweiger M, Dandel M, Stepanenko A, Drews T et al (2011) Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann Thorac Surg 91:1335–1340. https://doi.org/10.1016/j.athoracsur.2011.01.027

    Article  PubMed  Google Scholar 

  57. Zimpfer D, Strueber M, Aigner P, Schmitto JD, Fiane AE et al (2016) Evaluation of the HeartWare ventricular assist device Lavare cycle in a particle image velocimetry model and in clinical practice. Eur J Cardiothorac Surg : Official Journal of the European Association For Cardio-thoracic Surgery 50:839–848

    Article  Google Scholar 

  58. Wiegmann L, Thamsen B, de Zélicourt D, Granegger M, Boës S et al (2019) Fluid dynamics in the HeartMate 3: influence of the artificial pulse feature and residual cardiac pulsation. Artif Organs 43:363–376. https://doi.org/10.1111/aor.13346

    Article  PubMed  Google Scholar 

  59. Stöhr EJ, Ji R, Akiyama K, Mondellini G, Braghieri L et al (2021) Cerebral vasoreactivity in HeartMate 3 patients. J Heart Lung Transplant 40:786–793. https://doi.org/10.1016/j.healun.2021.05.005

    Article  PubMed  Google Scholar 

  60. Palazzolo T, Hirschhorn M, Garven E, Day S, Stevens RM et al (2022) Technology landscape of pediatric mechanical circulatory support devices: a systematic review 2010–2021. Artif Organs. https://doi.org/10.1111/aor.14242

    Article  PubMed  PubMed Central  Google Scholar 

  61. Butto A, Teele SA, Sleeper LA, Thrush PT, Philip J et al (2020) The impact of pre-implant illness severity on the outcomes of pediatric patients undergoing durable ventricular assist device. J Heart Lung Transplant 39:666–674. https://doi.org/10.1016/j.healun.2020.02.011

    Article  PubMed  Google Scholar 

  62. Burkhoff D, Topkara VK, Sayer G, Uriel N (2021) Reverse remodeling with left ventricular assist devices. Circul Res 128:1594–1612. https://doi.org/10.1161/CIRCRESAHA.121.318160

    Article  CAS  Google Scholar 

  63. Friedland-Little JM, Joong A, Shugh SB, O’Connor MJ, Bansal N et al (2022) Patient and device selection in pediatric MCS: a review of current consensus and unsettled questions. Pediatr Cardiol. https://doi.org/10.1007/s00246-022-02880-6

    Article  PubMed  PubMed Central  Google Scholar 

  64. Thangappan K, Zafar F, Lorts A, Adachi I, Rosenthal D et al (2022) MILESTONE: more than 1,200 children bridged to heart transplantation with mechanical circulatory support. ASAIO J (American Society For Artificial Internal Organs : 1992) 68:577–583. https://doi.org/10.1097/MAT.0000000000001635

    Article  Google Scholar 

  65. Adachi I, Zea-Vera R, Tunuguntla H, Denfield SW, Elias B et al (2019) Centrifugal-flow ventricular assist device support in children: a single-center experience. J Thorac Cardiovasc Surg 157. https://doi.org/10.1016/j.jtcvs.2018.12.045

  66. D’Addese L, Joong A, Burch M, Pahl E (2019) Pediatric heart transplantation in the current era. Curr Opin Pediatr 31:583–591. https://doi.org/10.1097/MOP.0000000000000805

    Article  PubMed  Google Scholar 

  67. Adachi I (2019) Pediatric ventricular assist device support as a permanent therapy: clinical reality. J Thorac Cardiovasc Surg 158:1438–1441. https://doi.org/10.1016/j.jtcvs.2019.02.145

    Article  PubMed  Google Scholar 

  68. CHUV (2023) Une première au CHUV : un enfant placé sous assistance cardiaque bi-ventriculaire a pu être sevré de la machine sans greffe cardiaque. Centre Hospitalier Universitaire Vaudois. https://www.chuv.ch/fr/chuv-home/espace-pro/journalistes/communiques-de-presse/detail/une-premiere-au-chuv-un-enfant-place-sous-assistance-cardiaque-bi-ventriculaire-a-pu-etre-sevre-de-la-machine-sans-greffe-cardiaque. Accessed 26 Jan 2024

  69. Hospital FW (2022) After the "artificial heart" treatment for 100 days, little boy got back to his "wholeheart". WeChat Official Account of Chinese Academy of Medical Sciences Fuwai Hospital. https://mp.weixin.qq.com/s/bDGHRXDIoCZFFDoJv85VQw. Accessed 26 Jan 2024

  70. Spigel ZA, Cho J, Adachi I (2020) Current status of pediatric mechanical circulatory support. Curr Opin Organ Transplant 25:231–236. https://doi.org/10.1097/mot.0000000000000761

    Article  PubMed  Google Scholar 

  71. Butto A, Mao CY, Wright L, Wetzel M, Kelleman MS et al (2022) Relationship of ventricular assist device support duration with pediatric heart transplant outcomes. J Heart Lung Transplant 41:61–69. https://doi.org/10.1016/j.healun.2021.09.011

    Article  PubMed  Google Scholar 

  72. Riggs KW, Zafar F, Lorts A, Villa CR, Bryant R 3rd et al (2020) Optimizing postcardiac transplantation outcomes in children with ventricular assist devices: how long should the bridge be? Asaio j 66:787–795. https://doi.org/10.1097/mat.0000000000001075

    Article  PubMed  Google Scholar 

  73. Jakovljevic DG, McDiarmid A, Hallsworth K, Seferovic PM, Ninkovic VM et al (2014) Effect of left ventricular assist device implantation and heart transplantation on habitual physical activity and quality of life. Am J Cardiol 114:88–93. https://doi.org/10.1016/j.amjcard.2014.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dring KJ, Hatch LA, Williams RA, Morris JG, Sunderland C et al (2022) Effect of 5-weeks participation in The Daily Mile on cognitive function, physical fitness, and body composition in children. Sci Rep 12:14309. https://doi.org/10.1038/s41598-022-18371-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kerrigan DJ, Cowger JA, Keteyian SJ (2022) Exercise in patients with left ventricular devices: the interaction between the device and the patient. Prog Cardiovasc Dis 70:33–39. https://doi.org/10.1016/j.pcad.2021.12.002

    Article  PubMed  Google Scholar 

  76. Karapolat H, Engin C, Eroglu M, Yagdi T, Zoghi M et al (2013) Efficacy of the cardiac rehabilitation program in patients with end-stage heart failure, heart transplant patients, and left ventricular assist device recipients. Transplant Proc 45:3381–3385. https://doi.org/10.1016/j.transproceed.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  77. Burstein DS, McBride MG, Rossano JW, O’Connor MJ, Lin KY et al (2021) Increasing pump speed during exercise training improves exercise capacity in children with ventricular assist devices. Asaio j 67:449–456. https://doi.org/10.1097/mat.0000000000001231

    Article  CAS  PubMed  Google Scholar 

  78. Severin R, Sabbahi A, Ozemek C, Phillips S, Arena R (2019) Approaches to improving exercise capacity in patients with left ventricular assist devices: an area requiring further investigation. Expert Rev Med Devices 16:787–798. https://doi.org/10.1080/17434440.2019.1660643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vignati C, Apostolo A, Cattadori G, Farina S, Del Torto A et al (2017) Lvad pump speed increase is associated with increased peak exercise cardiac output and vo, postponed anaerobic threshold and improved ventilatory efficiency. Int J Cardiol 230:28–32. https://doi.org/10.1016/j.ijcard.2016.12.112

    Article  PubMed  Google Scholar 

  80. Jung MH, Houston B, Russell SD, Gustafsson F (2017) Pump speed modulations and sub-maximal exercise tolerance in left ventricular assist device recipients: a double-blind, randomized trial. J Heart Lung Transplant 36:36–41. https://doi.org/10.1016/j.healun.2016.06.020

    Article  PubMed  Google Scholar 

  81. Muthiah K, Robson D, Prichard R, Walker R, Gupta S et al (2015) Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices. J Heart Lung Transplant 34:522–529. https://doi.org/10.1016/j.healun.2014.11.004

    Article  PubMed  Google Scholar 

  82. Hayward CS, Salamonsen R, Keogh AM, Woodard J, Ayre P et al (2011) Effect of alteration in pump speed on pump output and left ventricular filling with continuous-flow left ventricular assist device. ASAIO J 57:495–500. https://doi.org/10.1097/MAT.0b013e318233b112

    Article  PubMed  Google Scholar 

  83. Ai X, Gong Y, Hong X, Wang W, Liu J et al (2018) Extracorporeal life support in perioperative care of pediatric cardiac surgical patients in China. Chin J ECC 16:3–6. https://doi.org/10.13498/j.cnki.chin.j.ecc.2018.01.02

  84. Hospital FW (2022) The first pediatric LVAD implantation in China! Academician Hu Shengshou's team from Fuwai Hospital of the Chinese Academy of Medical Sciences successfully implanted Corheart 6 LVAD in a 14-year-old child. WeChat Official Account of Chinese Academy of Medical Sciences Fuwai Hospital. https://mp.weixin.qq.com/s/vlqLAY22YU5kPbV1hzBCfw. Accessed 26 Jan 2024

  85. Ricci Z, Amodeo A (2012) Prospective trial of a pediatric ventricular assist device. N Engl J Med 367. https://doi.org/10.1056/NEJMc1212304

  86. Jeewa A, Manlhiot C, McCrindle BW, Van Arsdell G, Humpl T et al (2010) Outcomes with ventricular assist device versus extracorporeal membrane oxygenation as a bridge to pediatric heart transplantation. Artif Organs 34:1087–1091. https://doi.org/10.1111/j.1525-1594.2009.00969.x

    Article  PubMed  Google Scholar 

  87. Geller BJ, Sinha SS, Kapur NK, Bakitas M, Balsam LB et al (2022) Escalating and de-escalating temporary mechanical circulatory support in cardiogenic shock: a scientific statement from the American Heart Association. Circulation 146:e50–e68. https://doi.org/10.1161/CIR.0000000000001076

    Article  PubMed  Google Scholar 

  88. MAQUET (2002) ROTAFLOW with ICU Kit(User’s Manual, 1.0). the Alfred. https://ecmo.icu/wp-content/uploads/pdfs/ROTAFLOW_UserManual.pdf. Accessed 18 Jan 2024

  89. Abbott (2019) PediMag® blood pump instructions for use. Abbott manuals. https://manuals.eifu.abbott/en/hcp/home.html. Accessed 19 Jan 2024

  90. Abbott (2019) CentriMagTM circulatory support systemoperation manual. Abbott manuals. https://manuals.eifu.abbott/en/hcp/home.html. Accessed 19 Jan 2024

  91. Zein R, Patel C, Mercado-Alamo A, Schreiber T, Kaki A (2022) A review of the impella devices. Interv Cardiol (London, England) 17:e05. https://doi.org/10.15420/icr.2021.11

  92. Heart B (2016) INCOR® Implantable ventricular assist device instructions for clinical use Berlin Heart. https://www.berlinheart.de/fileadmin/user_upload/Berlin_Heart/Dokumente/Downloads/Downloads_IFU/INCOR/clinic/5000013x13_A08_INC_GA_K_en.pdf. Accessed 26 Jan 2024

  93. Heart B (2018) Product Catalog-EXCOR® Pediatric, the ventricular assist device for children. Berlin Heart Inc. https://www.berlinheart.com/fileadmin/user_upload/Berlin_Heart/Bilder/US_Website/Berlin_Heart_Inc_Product_Catalog_MPC21_6_zusammengefuehrte_Seiten.pdf. Accessed 26 Jan 2024

  94. Abbott (2020) HeartMate II left ventricular assist system instructions for use Abbott manuals. https://manuals.eifu.abbott/en/hcp/home.html. Accessed 19 Jan 2024

  95. Abbott (2020) HeartMate 3 Left ventricular assist system instructions for use Abbott manuals. https://manuals.eifu.abbott/en/hcp/home.html. Accessed 27 Jan 2024

  96. HeartWare (2023) HeartWare™ HVAD™ system instructions for use. Medtronic manual library. https://www.medtronic.com/content/dam/emanuals/crdm/M034727C001_2_IFU_COLOR_view.pdf. Accessed 27 Jan 2024

  97. Bleiweis MS, Philip J, Peek GJ, Stukov Y, Janelle GM et al (2023) World J Pediatr Congenit Heart Surg 14:117–124. https://doi.org/10.1177/21501351221146150

    Article  PubMed  Google Scholar 

  98. Rohde S, Antonides CFJ, Muslem R, de Woestijne PCv, der Meulen MHv et al (2020) Pediatric ventricular assist device support in the Netherlands. World J Pediatr Congenit Heart Surg 11:275–283. https://doi.org/10.1177/2150135120902114

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mantell B, Addonizio L, Jain N, LaPar D, Chai P et al (2020) Evolution of pediatric ventricular assist devices and their neurologic and renal complications-A 24-year single-center experience. Artif Organs 44:987–994. https://doi.org/10.1111/aor.13696

    Article  PubMed  Google Scholar 

  100. Menéndez JJ, Sánchez-Galindo AC, Balcells J, Tejero-Hernández MÁ, Ferrer-Barba Á et al (2023) Short- and long-term survival of children treated with ventricular assist devices in Spain, based on 15 years' experience. Eur J Cardiothorac Surg : Official Journal of the European Association For Cardio-thoracic Surgery 63. https://doi.org/10.1093/ejcts/ezad050

  101. Joong A, Maeda K, Peng DM (2022) Ventricular assist device outcomes in infants and children with stage 1 single ventricle palliation. ASAIO J (American Society For Artificial Internal Organs : 1992) 68:e188–e195. https://doi.org/10.1097/MAT.0000000000001817

    Article  CAS  Google Scholar 

  102. Fu H-Y, Chou H-W, Lai C-H, Tsao C-I, Lu C-W (2023) Outcomes of pediatric patients supported with ventricular assist devices single center experience. J Formos Med Assoc = Taiwan Yi Zhi 122:172–181. https://doi.org/10.1016/j.jfma.2022.09.008

    Article  PubMed  Google Scholar 

  103. Rohde S, Sandica E, Veen K, Miera O, Amodeo A et al (2022) Cerebrovascular accidents in paediatric patients supported by the Berlin Heart EXCOR. Eur J Cardiothorac Surg : Official Journal of the European Association For Cardio-thoracic Surgery 62. https://doi.org/10.1093/ejcts/ezac381

  104. Yu J, Murray J, Ramamoorthy C, Chen S, Lee S et al (2021) Neurosurgical intervention in children with ventricular assist devices: a single-center case series review. Paediatr Anaesth 31:1208–1215. https://doi.org/10.1111/pan.14287

    Article  PubMed  Google Scholar 

  105. Adachi I (2018) Current status and future perspectives of the PumpKIN trial. Transl Pediatr 7:162–168. https://doi.org/10.21037/tp.2018.02.04

    Article  PubMed  PubMed Central  Google Scholar 

  106. Olia SE, Wearden PD, Maul TM, Shankarraman V, Kocyildirim E et al (2018) Preclinical performance of a pediatric mechanical circulatory support device: the PediaFlow ventricular assist device. J Thorac Cardiovasc Surg 156:1643-1651.e1647. https://doi.org/10.1016/j.jtcvs.2018.04.062

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cooper BT, Roszelle BN, Long TC, Deutsch S, Manning KB (2008) The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection. J Biomech Eng 130:041019. https://doi.org/10.1115/1.2939342

    Article  PubMed  Google Scholar 

  108. Weiss WJ, Carney EL, Clark JB, Peterson R, Cooper TK et al (2012) Chronic in vivo testing of the Penn State infant ventricular assist device. ASAIO J (American Society For Artificial Internal Organs : 1992) 58:65–72. https://doi.org/10.1097/MAT.0b013e318239feb4

    Article  Google Scholar 

  109. Lukic B, Clark JB, Izer JM, Cooper TK, Finicle HA et al (2019) Chronic ovine studies demonstrate low thromboembolic risk in the Penn State Infant Ventricular Assist Device. ASAIO J (American Society For Artificial Internal Organs : 1992) 65:371–379. https://doi.org/10.1097/MAT.0000000000000945

    Article  Google Scholar 

  110. Good BC, Ponnaluri SV, Weiss WJ, Manning KB (2022) Computational modeling of the Penn State Fontan Circulation Assist Device. ASAIO J (American Society For Artificial Internal Organs : 1992) 68:1513–1522. https://doi.org/10.1097/MAT.0000000000001708

    Article  Google Scholar 

  111. Ponnaluri SV, Christensen EJ, Good BC, Kubicki CJ, Deutsch S et al (2022) Experimental hemodynamics within the Penn State Fontan Circulatory Assist Device. J Biomech Eng 144. https://doi.org/10.1115/1.4053210

  112. Letsou GV, Pate TD, Gohean JR, Kurusz M, Longoria RG et al (2010) Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. J Thorac Cardiovasc Surg 140:1181–1188. https://doi.org/10.1016/j.jtcvs.2010.03.043

    Article  PubMed  Google Scholar 

  113. Gohean JR, Larson ER, Hsi BH, Kurusz M, Smalling RW et al (2017) Scaling the low-shear pulsatile TORVAD for Pediatric Heart Failure. ASAIO J 63:198–206. https://doi.org/10.1097/mat.0000000000000460

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bartoli CR, Hennessy-Strahs S, Gohean J, Villeda M, Larson E et al (2019) A novel toroidal-flow left ventricular assist device minimizes blood trauma: implications of improved ventricular assist device hemocompatibility. Ann Thorac Surg 107:1761–1767. https://doi.org/10.1016/j.athoracsur.2018.11.053

    Article  PubMed  Google Scholar 

  115. Gohean JR, Larson ER, Longoria RG, Kurusz M, Smalling RW (2019) Preload sensitivity with TORVAD counterpulse support prevents suction and overpumping. Cardiovasc Eng Technol 10:520–530. https://doi.org/10.1007/s13239-019-00419-0

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sarkisyan H, Stevens R, Tchantchaleishvili V, Rossano J, Throckmorton A (2021) Integrated long-term multifunctional pediatric mechanical circulatory assist device. Artif Organs 45:E65–E78. https://doi.org/10.1111/aor.13863

    Article  PubMed  Google Scholar 

  117. Krawiec C, Wang S, Kunselman AR, Ündar A (2014) Impact of pulsatile flow on hemodynamic energy in a Medos Deltastream DP3 pediatric extracorporeal life support system. Artif Organs 38:19–27. https://doi.org/10.1111/aor.12117

    Article  PubMed  Google Scholar 

  118. Wang S, Kunselman AR, Ündar A (2014) In vitro performance analysis of a novel pulsatile diagonal pump in a simulated pediatric mechanical circulatory support system. Artif Organs 38:64–72. https://doi.org/10.1111/aor.12181

    Article  CAS  PubMed  Google Scholar 

  119. Speth M, Münch F, Purbojo A, Glöckler M, Toka O et al (2016) Pediatric extracorporeal life support using a third generation diagonal pump. ASAIO J (American Society For Artificial Internal Organs : 1992) 62:482–490. https://doi.org/10.1097/MAT.0000000000000385

    Article  CAS  Google Scholar 

  120. Stiller B, Houmes RJ, Rüffer A, Kumpf M, Müller A et al (2018) Multicenter experience with mechanical circulatory support using a new diagonal pump in 233 children. Artif Organs 42:377–385. https://doi.org/10.1111/aor.13016

    Article  PubMed  Google Scholar 

  121. Wang S, Force M, Moroi MK, Patel S, Kunselman AR et al (2019) Effects of pulsatile control algorithms for diagonal pump on hemodynamic performance and hemolysis. Artif Organs 43:60–75. https://doi.org/10.1111/aor.13284

    Article  PubMed  Google Scholar 

  122. Patel S, Wang S, Pauliks L, Chang D, Clark JB et al (2015) Evaluation of a novel pulsatile extracorporeal life support system synchronized to the cardiac cycle: effect of rhythm changes on hemodynamic performance. Artif Organs 39:67–76. https://doi.org/10.1111/aor.12454

    Article  PubMed  Google Scholar 

  123. Force M, Moroi M, Wang S, Kunselman AR, Ündar A (2018) In vitro hemodynamic evaluation of ECG-synchronized pulsatile flow using i-Cor pump as short-term cardiac assist device for neonatal and pediatric population. Artif Organs 42:E153-e167. https://doi.org/10.1111/aor.13136

    Article  PubMed  Google Scholar 

  124. Petukhov D, Korn L, Walter M, Telyshev D (2019) A novel control method for rotary blood pumps as left ventricular assist device utilizing aortic valve state detection. Biomed Res Int 2019:1732160. https://doi.org/10.1155/2019/1732160

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pugovkin AA, Markov AG, Selishchev SV, Korn L, Walter M et al (2019) Advances in hemodynamic analysis in cardiovascular diseases investigation of energetic characteristics of adult and pediatric Sputnik left ventricular assist devices during mock circulation support. Cardiol Res Pract 2019:4593174. https://doi.org/10.1155/2019/4593174

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kimura M, Nishimura T, Kinoshita O, Kashiwa K, Kyo S et al (2012) Hemodynamic influence of tilting disc valve type on pump performance with the NIPRO-ventricular assist device. J Artif Organs : the Official Journal of the Japanese Society For Artificial Organs 15:134–139. https://doi.org/10.1007/s10047-011-0616-2

    Article  Google Scholar 

  127. Naito N, Takewa Y, Kishimoto S, Iizuka K, Mizuno T et al (2018) Preclinical animal study of the NIPRO-ventricular assist device for use in pediatric patients. J Artif Organs 21:156–163. https://doi.org/10.1007/s10047-017-1009-y

    Article  CAS  PubMed  Google Scholar 

  128. Tompkins LH, Gellman BN, Morello GF, Prina SR, Roussel TJ et al (2021) Design and computational evaluation of a pediatric MagLev rotary blood pump. ASAIO J (American Society For Artificial Internal Organs : 1992) 67:1026–1035. https://doi.org/10.1097/MAT.0000000000001323

    Article  Google Scholar 

  129. Monreal G, Koenig SC, Slaughter MS, Morello GF, Prina SR et al (2022) Feasibility testing of the inspired therapeutics NeoMate mechanical circulatory support system for neonates and infants. PLoS ONE 17:e0266822. https://doi.org/10.1371/journal.pone.0266822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tompkins LH, Gellman BN, Prina SR, Morello GF, Roussel T et al (2022) Development of inspired therapeutics pediatric VAD: computational analysis and characterization of VAD V3. Cardiovasc Eng Technol 13:624–637. https://doi.org/10.1007/s13239-021-00602-2

    Article  PubMed  Google Scholar 

  131. Nissim L, Karnik S, Smith PA, Wang Y, Frazier OH et al (2023) Machine learning based on computational fluid dynamics enables geometric design optimisation of the NeoVAD blades. Sci Rep 13:7183. https://doi.org/10.1038/s41598-023-33708-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82000389), the project of Shanghai Municipal Science and Technology Commission (20MC1920400) and Innovative research team of high-level universities in Shanghai (2021).

Author information

Authors and Affiliations

Authors

Contributions

Hao Zhang contributed to the conceptualization of this work. Literature search and visualization were performed by Xu Huang. The original draft of the manuscript was written by Xu Huang, and Yi Shen and Yiwei Liu contributed to the review and editing of the manuscript. Funding acquisition was provided by Yiwei Liu and Hao Zhang. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yiwei Liu or Hao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Shen, Y., Liu, Y. et al. Current status and future directions in pediatric ventricular assist device. Heart Fail Rev (2024). https://doi.org/10.1007/s10741-024-10396-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10741-024-10396-9

Keywords

Navigation