Skip to main content
Log in

Coming Soon to an OR Near You: a Child with a Ventricular Assist Device

  • Pediatric Anesthesia (R Agarwal, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the types of ventricular assist devices, device and patient selection, preoperative and intraoperative management, anticoagulation guidelines, and adverse events. Recent and ongoing studies are presented to illustrate the evolving science. As the number of patients with these devices continues to grow, practitioners will need an understanding of their function and mechanism of action to optimize perioperative care.

Recent Findings

The Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) released the 5th annual report detailing information on pediatric patients supported with ventricular assist devices (VADs) from 2012 to 2020. This report highlights ongoing trends with respect to types of devices and patients along with adverse effects and updated anticoagulation guidelines.

Summary

Continuous flow devices have shown improved outcomes in children compared to pulsatile devices. Research and development goals include miniaturizing the devices and minimizing adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

© John Wiley & Sons, Inc

Similar content being viewed by others

References

  1. Chair SY, Yu DS, Ng MT, Wang Q, Cheng HY, Wong EM, et al. Evolvement of left ventricular assist device: the implications on heart failure management. J Geriatr Cardiol. 2016;13(5):425–30.

    PubMed  PubMed Central  Google Scholar 

  2. Warnecke H, Berdjis F, Hennig E, Lange P, Schmitt D, Hummel M, et al. Mechanical left ventricular support as a bridge to cardiac transplantation in childhood. Eur J Cardiothorac Surg. 1991;5(6):330–3.

    Article  CAS  PubMed  Google Scholar 

  3. Rossano JW, VanderPluym CJ, Peng DM, Hollander SA, Maeda K, Adachi I, et al. Fifth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report. Ann Thorac Surg. 2021;112(6):1763–74.

    Article  PubMed  Google Scholar 

  4. Navaratnam M, Maeda K, Hollander SA. Pediatric ventricular assist devices: bridge to a new era of perioperative care. Paediatr Anaesth. 2019;29(5):506–18.

    Article  PubMed  Google Scholar 

  5. Friedland-Little JM, Joong A, Shugh SB, O’Connor MJ, Bansal N, Davies RR, et al. Patient and device selection in pediatric MCS: a review of current consensus and unsettled questions. Pediatr Cardiol. 2022;43(6):1193–204.

    Article  PubMed  Google Scholar 

  6. Conway J, St Louis J, Morales DLS, Law S, Tjossem C, Humpl T. Delineating survival outcomes in children <10 kg bridged to transplant or recovery with the Berlin Heart EXCOR Ventricular Assist Device. JACC Heart Fail. 2015;3(1):70–7.

    Article  PubMed  Google Scholar 

  7. Tunuguntla H, Conway J, Villa C, Rapoport A, Jeewa A. Destination-therapy ventricular assist device in children: “the future is now.” Can J Cardiol. 2020;36(2):216–22.

    Article  PubMed  Google Scholar 

  8. Purkey NJ, Lin A, Murray JM, Gowen M, Shuttleworth P, Maeda K, et al. Long-term pediatric ventricular assist device therapy: a case report of 2100+ days of support. ASAIO J. 2018;64(1):e1–2.

    Article  PubMed  Google Scholar 

  9. Mukku RB, Fonarow GC, Watson KE, Ajijola OA, Depasquale EC, Nsair A, et al. Heart failure therapies for end-stage chemotherapy-induced cardiomyopathy. J Card Fail. 2016;22(6):439–48.

    Article  CAS  PubMed  Google Scholar 

  10. Oliveira GH, Qattan MY, Al-Kindi S, Park SJ. Advanced heart failure therapies for patients with chemotherapy-induced cardiomyopathy. Circ Heart Fail. 2014;7(6):1050–8.

    Article  PubMed  Google Scholar 

  11. Adachi I, Burki S, Zafar F, Morales DL. Pediatric ventricular assist devices. J Thorac Dis. 2015;7(12):2194–202.

    PubMed  PubMed Central  Google Scholar 

  12. Butto A, Teele SA, Sleeper LA, Thrush PT, Philip J, Lu M, et al. The impact of pre-implant illness severity on the outcomes of pediatric patients undergoing durable ventricular assist device. J Heart Lung Transplant. 2020;39(7):666–74.

    Article  PubMed  Google Scholar 

  13. Almond CS, Morales DL, Blackstone EH, Turrentine MW, Imamura M, Massicotte MP, et al. Berlin Heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation. 2013;127(16):1702–11.

    Article  CAS  PubMed  Google Scholar 

  14. Fraser CD Jr, Jaquiss RD. The Berlin Heart EXCOR Pediatric ventricular assist device: history, North American experience, and future directions. Ann N Y Acad Sci. 2013;1291:96–105.

    Article  PubMed  Google Scholar 

  15. Yarlagadda VV, Maeda K, Zhang Y, Chen S, Dykes JC, Gowen MA, et al. Temporary circulatory support in U.S. children awaiting heart transplantation. J Am Coll Cardiol. 2017;70(18):2250–60.

  16. Glazier JJ, Kaki A. The impella device: historical background, clinical applications and future directions. Int J Angiol. 2019;28(2):118–23.

    Article  PubMed  Google Scholar 

  17. Lorts A, Eghtesady P, Mehegan M, Adachi I, Villa C, Davies R, et al. Outcomes of children supported with devices labeled as “temporary” or short term: a report from the Pediatric Interagency Registry for Mechanical Circulatory Support. J Heart Lung Transplant. 2018;37(1):54–60.

    Article  PubMed  Google Scholar 

  18. Dalia AA, Cronin B, Stone ME, Turner K, Hargrave J, Vidal Melo MF, et al. Anesthetic management of patients with continuous-flow left ventricular assist devices undergoing noncardiac surgery: an update for anesthesiologists. J Cardiothorac Vasc Anesth. 2018;32(2):1001–12.

    Article  PubMed  Google Scholar 

  19. Oleyar M, Stone M, Neustein SM. Perioperative management of a patient with a nonpulsatile left ventricular-assist device presenting for noncardiac surgery. J Cardiothorac Vasc Anesth. 2010;24(5):820–3.

    Article  PubMed  Google Scholar 

  20. Conway J, Miera O, Adachi I, Maeda K, Eghtesady P, Henderson HT, et al. Worldwide experience of a durable centrifugal flow pump in pediatric patients. Semin Thorac Cardiovasc Surg. 2018;30(3):327–35.

    Article  PubMed  Google Scholar 

  21. Maeda K, Rosenthal DN, Reinhartz O. Ventricular assist devices for neonates and infants. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2018;21:9–14.

    Article  PubMed  Google Scholar 

  22. Chen S, Rosenthal DN, Murray J, Dykes JC, Almond CS, Yarlagadda VV, et al. Bridge to transplant with ventricular assist device support in pediatric patients with single ventricle heart disease. ASAIO J. 2020;66(2):205–11.

    Article  PubMed  Google Scholar 

  23. Gorbea M. A review of physiologic considerations and challenges in pediatric patients with failing single- ventricle physiology undergoing ventricular assist device placement. J Cardiothorac Vasc Anesth. 2022;36(6):1756–70.

    Article  PubMed  Google Scholar 

  24. Lichtenstein KM, Tunuguntla HP, Peng DM, Buchholz H, Conway J. Pediatric ventricular assist device registries: update and perspectives in the era of miniaturized continuous-flow pumps. Ann Cardiothorac Surg. 2021;10(3):329–38.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Auerbach SR, Simpson KE, Action Learning Network I. HVAD usage and outcomes in the current pediatric ventricular assist device field: an advanced cardiac therapies improving outcomes network (ACTION) analysis. ASAIO J. 2021;67(6):675–80.

    Article  CAS  PubMed  Google Scholar 

  26. Zafar F, Conway J, Bleiweis MS, Al-Aklabi M, Ameduri R, Barnes A, et al. Berlin Heart EXCOR and ACTION post-approval surveillance study report. J Heart Lung Transplant. 2021;40(4):251–9.

    Article  PubMed  Google Scholar 

  27. Lorts A, Conway J, Schweiger M, Adachi I, Amdani S, Auerbach SR, et al. ISHLT consensus statement for the selection and management of pediatric and congenital heart disease patients on ventricular assist devices Endorsed by the American Heart Association. J Heart Lung Transplant. 2021;40(8):709–32.

    Article  PubMed  Google Scholar 

  28. Adachi I, Kostousov V, Hensch L, Chacon-Portillo MA, Teruya J. Management of hemostasis for pediatric patients on ventricular-assist devices. Semin Thromb Hemost. 2018;44(1):30–7.

    Article  PubMed  Google Scholar 

  29. Martin AA, Bhat R, Chitlur M. Hemostasis in pediatric extracorporeal life support: overview and challenges. Pediatr Clin North Am. 2022;69(3):441–64.

    Article  PubMed  Google Scholar 

  30. Karimova A, Pockett CR, Lasuen N, Dedieu N, Rutledge J, Fenton M, et al. Right ventricular dysfunction in children supported with pulsatile ventricular assist devices. J Thorac Cardiovasc Surg. 2014;147(5):1691-7 e1.

    Article  PubMed  Google Scholar 

  31. Sparrow CT, LaRue SJ, Schilling JD. Intersection of pulmonary hypertension and right ventricular dysfunction in patients on left ventricular assist device support: is there a role for pulmonary vasodilators? Circ Heart Fail. 2018;11(1):e004255.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ghbeis MB, Vander Pluym CJ, Thiagarajan RR. Hemostatic challenges in pediatric critical care medicine-hemostatic balance in VAD. Front Pediatr. 2021;9:625632.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murray JM, Miera O, Stiller B, Maeda K, Almond CS. Lessons learned from managing antithrombotic therapy in children supported with pediatric ventricular assist devices. ASAIO J. 2022;68(11):1321–31.

    Article  PubMed  Google Scholar 

  34. Steiner ME, Bomgaars LR, Massicotte MP, Berlin Heart EPVADIDEsi. Antithrombotic therapy in a prospective trial of a pediatric ventricular assist device. ASAIO J. 2016;62(6):719–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosenthal DN, Lancaster CA, McElhinney DB, Chen S, Stein M, Lin A, et al. Impact of a modified anti-thrombotic guideline on stroke in children supported with a pediatric ventricular assist device. J Heart Lung Transplant. 2017;36(11):1250–7.

    Article  PubMed  Google Scholar 

  36. May LJ, Liu X, Tesoro T, Yang J, Lo C, Chen S, et al. Usefulness of anti-platelet therapy testing in children supported with a ventricular assist device. J Heart Lung Transplant. 2019;38(7):781–3.

    Article  PubMed  Google Scholar 

  37. Flannery KM, Kamra K, Maeda K, Shuttleworth P, Almond C, Navaratnam M. Management of a pediatric patient with a left ventricular assist device and symptomatic acquired von Willebrand syndrome presenting for orthotopic heart transplant. Semin Cardiothorac Vasc Anesth. 2020;24(4):355–9.

    Article  PubMed  Google Scholar 

  38. Schlagenhauf A, Kalbhenn J, Geisen U, Beyersdorf F, Zieger B. Acquired von Willebrand syndrome and platelet function defects during extracorporeal life support (mechanical circulatory support). Hamostaseologie. 2020;40(2):221–5.

    Article  PubMed  Google Scholar 

  39. Giridharan GA, Berg IC, Ismail E, Nguyen KT, Hecking J, Kirklin JK, et al. Loss of pulsatility with continuous-flow left ventricular assist devices and the significance of the arterial endothelium in von-Willebrand factor production and degradation. Artif Organs. 2022;47:640.

    Article  PubMed  Google Scholar 

  40. Perez-Velasco D, Matisoff A. CHD Patients for non-cardiac surgery. In: Verghese ST, Kane TD, editors. Anesthetic Management in Pediatric General Surgery: Evolving and Current Concepts. Cham: Springer International Publishing; 2021. p. 67–83.

    Chapter  Google Scholar 

  41. Power A, Navaratnam M, Murray JM, Peng LF, Rosenthal DN, Dykes JC, et al. Adverse events associated with cardiac catheterization in children supported with ventricular assist devices. ASAIO J. 2022;68(9):1174–81.

    Article  PubMed  Google Scholar 

  42. Yu J, Murray J, Ramamoorthy C, Chen S, Lee S, Ryan K, et al. Neurosurgical intervention in children with ventricular assist devices: a single-center case series review. Paediatr Anaesth. 2021;31(11):1208–15.

    Article  PubMed  Google Scholar 

  43. Navaratnam M, Dubin A. Pediatric pacemakers and ICDs: how to optimize perioperative care. Paediatr Anaesth. 2011;21(5):512–21.

    Article  PubMed  Google Scholar 

  44. Adachi I. Current status and future perspectives of the PumpKIN trial. Transl Pediatr. 2018;7(2):162–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Edelson JB, Rossano JW. Pediatric device trials are the ideal way to bring devices to market. World J Pediatr Congenit Heart Surg. 2022;13(2):231–4.

    Article  PubMed  Google Scholar 

  46. Burki S, Adachi I. Pediatric ventricular assist devices: current challenges and future prospects. Vasc Health Risk Manag. 2017;13:177–85.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Kleiman.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleiman, Z., Navaratnam, M. Coming Soon to an OR Near You: a Child with a Ventricular Assist Device. Curr Anesthesiol Rep 13, 172–180 (2023). https://doi.org/10.1007/s40140-023-00565-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-023-00565-1

Keywords

Navigation