Skip to main content
Log in

Targeting mitochondrial dysfunction with elamipretide

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Although currently employed therapies for heart failure decrease overall mortality and improve patient quality of life temporarily, the disease is known to progress even for patients who receive all guideline-recommended therapies. This indicates that our concise understanding of heart failure and of disease progression is incomplete, and there is a need for new interventions that may augment, or even supplant, currently available options. A literature review reveals that an exciting, novel area of current research is focused on mitochondria, which are uniquely juxtaposed at the sites of both generation of high-energy molecules and initiation of programmed cell death. Elamipretide is being studied both to maintain cellular biogenetics and prevent reactive oxygen species-induced cell damage by targeting and stabilizing the cardiolipin-cytochrome c supercomplex. Thus far, elamipretide has been shown to increase left ventricular ejection fraction in dog models of heart failure with reduced ejection fraction and to prevent left ventricular remodeling in rats. In early-phase clinical trials, elamipretide administration has not resulted in any severe adverse events, and it has shown promising improvements in cardiac hemodynamics at highest doses. Nonetheless, additional studies are necessary to describe the long-term safety and efficacy of elamipretide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Konstam MA, Dracup K, Baker DW, Bottorff MB, Brooks NH, Dacey RA et al (1995) Heart failure: evaluation and care of patients with left ventricular systolic dysfunction. J Card Fail 1:183–187. https://doi.org/10.1016/1071-9164(95)90021-7

    Article  CAS  PubMed  Google Scholar 

  2. Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100:999–1008. https://doi.org/10.1161/01.cir.100.9.999

    Article  CAS  PubMed  Google Scholar 

  3. Foody JM, Farrell MH, Krumholz HM (2002) Beta-blocker therapy in heart failure: scientific review. JAMA 287:883–889. https://doi.org/10.1001/jama.287.7.883

    Article  CAS  PubMed  Google Scholar 

  4. Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN, Nicklas JM et al (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327:685–691. https://doi.org/10.1056/NEJM199209033271003

    Article  CAS  PubMed  Google Scholar 

  5. Flather MD, Yusuf S, Køber L, Pfeffer M, Hall A, Murray G et al (2000) Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group Lancet 355:1575–1581. https://doi.org/10.1016/s0140-6736(00)02212-1

    Article  CAS  Google Scholar 

  6. Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ et al (2000) Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial–the Losartan Heart Failure Survival Study ELITE II. Lancet 355:1582–1587. https://doi.org/10.1016/s0140-6736(00)02213-3

    Article  CAS  PubMed  Google Scholar 

  7. Zannad F, McMurray JJV, Krum H, van Veldhuisen DJ, Swedberg K, Shi H et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21. https://doi.org/10.1056/NEJMoa1009492

    Article  CAS  PubMed  Google Scholar 

  8. McMurray JJV, Solomon SD, Inzucchi SD, Kober L, Kosiborod MN, Martinez FA et al (2019) Dapagliflozin and patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303

    Article  CAS  PubMed  Google Scholar 

  9. Paul S, Harshaw-Ellis K (2019) Evolving use of biomarkers in the management of heart failure. Cardiol Rev 27:153–159. https://doi.org/10.1097/CRD.0000000000000224

    Article  PubMed  Google Scholar 

  10. Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN, Nicklas JM et al (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293–302. https://doi.org/10.1056/NEJM199108013250501

    Article  PubMed  Google Scholar 

  11. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004. https://doi.org/10.1056/NEJMoa1409077

    Article  CAS  PubMed  Google Scholar 

  12. Nohria A, Lewis E, Stevenson LW (2002) Medical management of advanced heart failure. JAMA 287:628–640. https://doi.org/10.1001/jama.287.5.628

  13. Dracup K, Baker DW, Dunbar SB, Dacey RA, Brooks NH, Johnson JC et al (1994) Management of heart failure. II. Counseling, education, and lifestyle modifications. JAMA 272:1442–6. https://doi.org/10.1001/jama.1994.03520180066037

  14. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T et al (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350:2140–2150. https://doi.org/10.1056/NEJMoa032423

    Article  CAS  PubMed  Google Scholar 

  15. Ravichandran, PS. Mechanical circulatory support in a nutshell – American College of Cardiology 2015 Nov 13. https://www.acc.org/latest-in-cardiology/articles/2015/11/12/09/28/mechanical-circulatory-support-in-a-nutshell (accessed January 5, 2020)

  16. Miller L, Birks E, Guglin M, Lamba H, Frazier OH (2019) Use of ventricular assist devices and heart transplantation for advanced heart failure. Circ Res 124:1658–1678. https://doi.org/10.1161/CIRCRESAHA.119.313574

    Article  CAS  PubMed  Google Scholar 

  17. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP et al (2019) Heart Disease and Stroke Statistics-2019 Update: a report from the American Heart Association. Circulation 139:e56-528. https://doi.org/10.1161/CIR.0000000000000659

    Article  PubMed  Google Scholar 

  18. Underlying Cause of Death, 1999–2017. https://wonder.cdc.gov/controller/datarequest/D76 (accessed January 4, 2020)

  19. Neubauer S (2007) The failing heart–an engine out of fuel. N Engl J Med 356:1140–1151. https://doi.org/10.1056/NEJMra063052

    Article  PubMed  Google Scholar 

  20. Cooper GM (2000) Actin, myosin, and cell movement. The Cell: A Molecular Approach, 2nd Edition

  21. Herrmann G, Decherd GM (1939) The chemical nature of heart failure. Ann Intern Med 12:1233. https://doi.org/10.7326/0003-4819-12-8-1233

    Article  CAS  Google Scholar 

  22. Wollenberger A (1947) On the energy-rich phosphate supply of the failing heart. Am J Physiol 150:733–745. https://doi.org/10.1152/ajplegacy.1947.150.4.733

    Article  CAS  PubMed  Google Scholar 

  23. Olson RE (1959) Myocardial metabolism in congestive heart failure. J Chronic Dis 9:442–464. https://doi.org/10.1016/0021-9681(59)90172-9

    Article  CAS  PubMed  Google Scholar 

  24. Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145. https://doi.org/10.1161/01.RES.0000137170.41939.d9

    Article  CAS  PubMed  Google Scholar 

  25. Taegtmeyer H (2000) Metabolism–the lost child of cardiology. J Am Coll Cardiol 36:1386–1388

    Article  CAS  Google Scholar 

  26. Taegtmeyer H (2004) Cardiac metabolism as a target for the treatment of heart failure. Circulation 110:894–896. https://doi.org/10.1161/01.CIR.0000139340.88769.D5

    Article  PubMed  Google Scholar 

  27. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129. https://doi.org/10.1152/physrev.00006.2004

    Article  CAS  PubMed  Google Scholar 

  28. Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol (Lond) 555:1–13. https://doi.org/10.1113/jphysiol.2003.055095

    Article  CAS  Google Scholar 

  29. Dalal JJ, Mishra S (2017) Modulation of myocardial energetics: an important category of agents in the multimodal treatment of coronary artery disease and heart failure. Indian Heart J 69:393–401. https://doi.org/10.1016/j.ihj.2017.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lopaschuk GD, Rebeyka IM, Allard MF (2002) Metabolic modulation: a means to mend a broken heart. Circulation 105:140–142

    Article  CAS  Google Scholar 

  31. Morrow DA, Givertz MM (2005) Modulation of myocardial energetics: emerging evidence for a therapeutic target in cardiovascular disease. Circulation 112:3218–3221. https://doi.org/10.1161/CIRCULATIONAHA.105.581819

    Article  PubMed  Google Scholar 

  32. Essop MF, Opie LH (2004) Metabolic therapy for heart failure. Eur Heart J 25:1765–1768. https://doi.org/10.1016/j.ehj.2004.08.019

    Article  PubMed  Google Scholar 

  33. van Bilsen M, Smeets PJH, Gilde AJ, van der Vusse GJ (2004) Metabolic remodeling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res 61:218–226. https://doi.org/10.1016/j.cardiores.2003.11.014

    Article  CAS  PubMed  Google Scholar 

  34. Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC (2017) Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-Part Series. J Am Coll Cardiol 70:212–229. https://doi.org/10.1016/j.jacc.2017.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457–470. https://doi.org/10.1038/s41569-018-0044-6

    Article  CAS  PubMed  Google Scholar 

  36. Folkers K, Wolaniuk J, Simonsen R, Morishita M, Vadhanavikit S (1985) Biochemical rationale and the cardiac response of patients with muscle disease to therapy with coenzyme Q10. Proc Natl Acad Sci USA 82:4513–4516. https://doi.org/10.1073/pnas.82.13.4513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D et al (2014) The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2:641–649. https://doi.org/10.1016/j.jchf.2014.06.008

    Article  PubMed  Google Scholar 

  38. Smith RAJ, Hartley RC, Cochemé HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352. https://doi.org/10.1016/j.tips.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  39. Szeto HH (2014) First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 171:2029–2050. https://doi.org/10.1111/bph.12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513. https://doi.org/10.1002/jcp.1041360316

    Article  CAS  PubMed  Google Scholar 

  41. Schlame M, Ren M (2009) The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta 1788:2080–2083. https://doi.org/10.1016/j.bbamem.2009.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schug ZT, Gottlieb E (2009) Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 1788:2022–2031. https://doi.org/10.1016/j.bbamem.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  43. Sorice M, Manganelli V, Matarrese P, Tinari A, Misasi R, Malorni W et al (2009) Cardiolipin-enriched raft-like microdomains are essential activating platforms for apoptotic signals on mitochondria. FEBS Lett 583:2447–2450. https://doi.org/10.1016/j.febslet.2009.07.018

    Article  CAS  PubMed  Google Scholar 

  44. Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2010) Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med 48:1286–1295. https://doi.org/10.1016/j.freeradbiomed.2010.02.020

    Article  CAS  PubMed  Google Scholar 

  45. Nickel A, Kohlhaas M, Maack C (2014) Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol 73:26–33. https://doi.org/10.1016/j.yjmcc.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  46. Biala AK, Kirshenbaum LA (2014) The interplay between cell death signaling pathways in the heart. Trends Cardiovasc Med 24:325–331. https://doi.org/10.1016/j.tcm.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  47. Han X, Yang J, Cheng H, Yang K, Abendschein DR, Gross RW (2005) Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry 44:16684–16694. https://doi.org/10.1021/bi051908a

    Article  CAS  PubMed  Google Scholar 

  48. Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol, Cell Physiol 292:C33-44. https://doi.org/10.1152/ajpcell.00243.2006

    Article  CAS  Google Scholar 

  49. Shi Y (2010) Emerging roles of cardiolipin remodeling in mitochondrial dysfunction associated with diabetes, obesity, and cardiovascular diseases. J Biomed Res 24:6–15. https://doi.org/10.1016/S1674-8301(10)60003-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Claypool SM, Koehler CM (2012) The complexity of cardiolipin in health and disease. Trends Biochem Sci 37:32–41. https://doi.org/10.1016/j.tibs.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  51. Ikon N, Ryan RO (2017) Barth syndrome: connecting cardiolipin to cardiomyopathy. Lipids 52:99–108. https://doi.org/10.1007/s11745-016-4229-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dey S, DeMazumder D, Sidor A, Foster DB, O’Rourke B (2018) Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 123:356–371. https://doi.org/10.1161/CIRCRESAHA.118.312708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Errami M, Galindo CL, Tassa AT, Dimaio JM, Hill JA, Garner HR (2008) Doxycycline attenuates isoproterenol- and transverse aortic banding-induced cardiac hypertrophy in mice. J Pharmacol Exp Ther 324:1196–1203. https://doi.org/10.1124/jpet.107.133975

    Article  CAS  PubMed  Google Scholar 

  54. Hori Y, Kunihiro S, Sato S, Yoshioka K, Hara Y, Kanai K et al (2009) Doxycycline attenuates isoproterenol-induced myocardial fibrosis and matrix metalloproteinase activity in rats. Biol Pharm Bull 32:1678–1682. https://doi.org/10.1248/bpb.32.1678

    Article  CAS  PubMed  Google Scholar 

  55. Schulze CJ, Castro MM, Kandasamy AD, Cena J, Bryden C, Wang SH et al (2013) Doxycycline reduces cardiac matrix metalloproteinase-2 activity but does not ameliorate myocardial dysfunction during reperfusion in coronary artery bypass patients undergoing cardiopulmonary bypass. Crit Care Med 41:2512–2520. https://doi.org/10.1097/CCM.0b013e318292373c

    Article  CAS  PubMed  Google Scholar 

  56. Riba A, Deres L, Eros K, Szabo A, Magyar K, Sumegi B et al (2017) Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure. PLoS ONE 12:e0175195. https://doi.org/10.1371/journal.pone.0175195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marín-García J, Akhmedov AT, Moe GW (2013) Mitochondria in heart failure: the emerging role of mitochondrial dynamics. Heart Fail Rev 18:439–456. https://doi.org/10.1007/s10741-012-9330-2

    Article  PubMed  Google Scholar 

  58. Ong S-B, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022. https://doi.org/10.1161/CIRCULATIONAHA.109.906610

    Article  CAS  PubMed  Google Scholar 

  59. Elewa MAF, Al-Gayyar MM, Schaalan MF, Abd El Galil KH, Ebrahim MA, El-Shishtawy MM (2015) Hepatoprotective and anti-tumor effects of targeting MMP-9 in hepatocellular carcinoma and its relation to vascular invasion markers. Clin Exp Metastasis 32:479–93. https://doi.org/10.1007/s10585-015-9721-6

  60. Griffin MO, Fricovsky E, Ceballos G, Villarreal F (2010) Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol, Cell Physiol 299:C539–48.https://doi.org/10.1152/ajpcell.00047.2010

  61. Reily C, Mitchell T, Chacko BK, Benavides G, Murphy MP, Darley-Usmar V (2013) Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol 1:86–93. https://doi.org/10.1016/j.redox.2012.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sabbah HN, Wang M, Zhang K, Gupta RC, Rastogi S (2012) Acute Intravenous infusion of Bendavia (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular systolic function in dogs with advanced heart failure circulation. 126:A15385

  63. Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K (2016) Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail 9:e002206. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dai W, Shi J, Gupta RC, Sabbah HN, Hale SL, Kloner RA (2014) Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J Cardiovasc Pharmacol 64:543–553. https://doi.org/10.1097/FJC.0000000000000155

    Article  CAS  PubMed  Google Scholar 

  65. Daubert MA, Yow E, Dunn G, Marchev S, Barnhart H, Douglas PS et al (2017) Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide. Circ Heart Fail 10. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004389

  66. Zhao K, Luo G, Zhao G-M, Schiller PW, Szeto HH (2003) Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther 304:425–432. https://doi.org/10.1124/jpet.102.040147

    Article  CAS  PubMed  Google Scholar 

  67. Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW et al (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690. https://doi.org/10.1074/jbc.M402999200

    Article  CAS  PubMed  Google Scholar 

  68. Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD et al (2013) The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol 24:1250–1261. https://doi.org/10.1681/ASN.2012121216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gibson CM, Giugliano RP, Kloner RA, Bode C, Tendera M, Jánosi A et al (2016) EMBRACE STEMI study: a Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J 37:1296–1303. https://doi.org/10.1093/eurheartj/ehv597

    Article  CAS  PubMed  Google Scholar 

  70. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J et al (2020) Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med 382:1883–1893. https://doi.org/10.1056/NEJMoa1915928

    Article  CAS  PubMed  Google Scholar 

  71. Teerlink JR, Diaz R, Felker M, McMurray JJV, Metra M, Solomon SD et al (2021) Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med 384:105–116. https://doi.org/10.1056/NEJMoa2025797

    Article  CAS  PubMed  Google Scholar 

  72. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT0278874, Effect of elamipretide on left ventricular function in subjects with stable heart failure and reduced ejection fraction. Cited 2021 4 Nov. Available at https://clinicaltrials.gov/ct2/show/study/NCT02788747?term=elamipretide&cond=Heart+Failure&draw=2&rank=3

  73. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT0291466, A phase 2 study to evaluate the cardiac and renal effects of short-term treatment with elamipretide in patients hospitalized with congestion due to heart failure. Cited 2021 4 Nov. Available at https://clinicaltrials.gov/ct2/show/study/NCT02914665?term=elamipretide&cond=Heart+Failure&draw=2&rank=2

Download references

Acknowledgements

The authors would like to thank the Departments of Internal Medicine and Cardiology at the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell for their support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. CO, AS, and GH drafted the original manuscript. All authors edited and commented on all versions of the manuscript. GH and AA provided administrative support and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexander T. Smith.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obi, C., Smith, A.T., Hughes, G.J. et al. Targeting mitochondrial dysfunction with elamipretide. Heart Fail Rev 27, 1925–1932 (2022). https://doi.org/10.1007/s10741-021-10199-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10199-2

Keywords

Navigation