Skip to main content

Mitochondrial Therapies in Heart Failure

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 243))

Abstract

The current therapy for patients with stable systolic heart failure is largely limited to treatments that interfere with neurohormonal activation. Critical pathophysiological hallmarks of heart failure are an energetic deficit and oxidative stress, and both may be the result of mitochondrial dysfunction. This dysfunction is not (only) the result of defect within mitochondria per se, but is in particular traced to defects in intermediary metabolism and of the regulatory interplay between excitation-contraction coupling and mitochondrial energetics, where defects of cytosolic calcium and sodium handling in failing hearts may play important roles. In the past years, several therapies targeting mitochondria have emerged with promising results in preclinical models. Here, we discuss the mechanisms and results of these mitochondria-targeted therapies, but also of interventions that were not primarily thought to target mitochondria but may have important impact on mitochondrial biology as well, such as iron and exercise. Future research should be directed at further delineating the details of mitochondrial dysfunction in patients with heart failure to further optimize these treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164–174

    PubMed  PubMed Central  Google Scholar 

  • Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RAJ, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19:1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, Vatner SF, Sadoshima J (2008) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133:978–993

    Article  CAS  PubMed  Google Scholar 

  • Akar FG, Aon MA, Tomaselli GF, O’Rourke B (2005) The mitochondrial origin of postischemic arrhythmias. J Clin Invest 115:3527–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Luscher TF, Bart B, Banasiak W, Niegowska J, Kirwan B-A, Mori C, von Eisenhart RB, Pocock SJ, Poole-Wilson PA, Ponikowski P (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 361:2436–2448

    Article  CAS  PubMed  Google Scholar 

  • Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baines CP, Goto M, Downey JM (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29:207–216

    Article  CAS  PubMed  Google Scholar 

  • Balaban R (2002) Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 34:1259–1271

    Article  CAS  PubMed  Google Scholar 

  • Balaban RS (2009) Domestication of the cardiac mitochondrion for energy conversion. J Mol Cell Cardiol 46:832–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banach M, Serban C, Ursoniu S, Rysz J, Muntner P, Toth PP, Jones SR, Rizzo M, Glasser SP, Watts GF, Blumenthal RS, Lip GYH, Mikhailidis DP, Sahebkar A, Group LaBPM-aCL (2015) Statin therapy and plasma coenzyme Q10 concentrations – a systematic review and meta-analysis of placebo-controlled trials. Pharmacol Res 99:329–336

    Article  CAS  PubMed  Google Scholar 

  • Bayeva M, Gheorghiade M, Ardehali H (2013) Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 61:599–610

    Article  CAS  PubMed  Google Scholar 

  • Belch JJ, Bridges AB, Scott N, Chopra M (1991) Oxygen free radicals and congestive heart failure. Heart 65:245–248

    Google Scholar 

  • Benda NMM, Seeger JPH, Stevens GGCF, Hijmans-Kersten BTP, van Dijk APJ, Bellersen L, Lamfers EJP, Hopman MTE, Thijssen DHJ (2015) Effects of high-intensity interval training versus continuous training on physical fitness, cardiovascular function and quality of life in heart failure patients. PLoS One 10:e0141256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bentinger M, Brismar K, Dallner G (2007) The antioxidant role of coenzyme Q. Mitochondrion 7:S41–S50

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda) 21:380–387

    Article  CAS  Google Scholar 

  • Biasutto L, Azzolini M, Szabò I, Zoratti M (2016) The mitochondrial permeability transition pore in AD 2016: an update. Biochim Biophys Acta 1863:2515–2530

    Article  CAS  PubMed  Google Scholar 

  • Blayney L, Bailey-Wood R, Jacobs A, Henderson A, Muir J (1976) The effects of iron deficiency on the respiratory function and cytochrome content of rat heart mitochondria. Circ Res 39:744–748

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Murphy MP (1987) Control of electron flux through the respiratory chain in mitochondria and cells. Biol Rev 62:141–193

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Hale SL, Baines CP, del Rio CL, Hamlin RL, Yueyama Y, Kijtawornrat A, Yeh ST, Frasier CR, Stewart LM, Moukdar F, Shaikh SR, Fisher-Wellman KH, Neufer PD, Kloner RA (2014) Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia. J Cardiovasc Pharmacol Ther 19:121–132

    Article  CAS  PubMed  Google Scholar 

  • Carlisle JB, Danjoux G, Kerr K, Snowden C, Swart M (2015) Validation of long-term survival prediction for scheduled abdominal aortic aneurysm repair with an independent calculator using only pre-operative variables. Anaesthesia 70:654–665

    Article  CAS  PubMed  Google Scholar 

  • Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B (2009) Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J 96:1388–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, Liu T, Thakur A, Sawicki KT, Prasad SV, Ardehali H (2016) Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med 8:247–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatham JC, Young ME (2012) Metabolic remodeling in the hypertrophic heart: fuel for thought. Circ Res 111:666–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Csordas G, Jowdy C, Schneider TG, Csordas N, Wang W, Liu Y, Kohlhaas M, Meiser M, Bergem S, Nerbonne JM, Dorn GW 2nd, Maack C (2012) Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca2+ crosstalk. Circ Res 111:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chidsey CA, Weinbach EC, Pool PE, Morrow AG (1966) Biochemical studies of energy production in the failing human heart. J Clin Invest 45:40–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogliati S, Calvo E, Loureiro M, Guaras AM, Nieto-Arellano R, Garcia-Poyatos C, Ezkurdia I, Mercader N, Vázquez J, Enríquez JA (2016) Mechanism of super-assembly of respiratory complexes III and IV. Nature 539:579–582

    Google Scholar 

  • Cordero-Reyes AM, Gupte AA, Youker KA, Loebe M, Hsueh WA, Torre-Amione G, Taegtmeyer H, Hamilton DJ (2014) Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J Mol Cell Cardiol 68:98–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortassa S, O’Rourke B, Winslow RL, Aon MA (2009) Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. Biophys J 96:2466–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane FL (2007) Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion 7:S2–S7

    Article  CAS  PubMed  Google Scholar 

  • Dai D-F, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, Rabinovitch PS (2011a) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. JAC 58:73–82

    CAS  Google Scholar 

  • Dai D-F, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, Marcinek DJ, Dorn GW, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS (2011b) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108:837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  CAS  Google Scholar 

  • Dixon SJ, Stockwell BR (2013) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10:9–17

    Article  CAS  Google Scholar 

  • Eaton JW, Qian M (2002) Molecular bases of cellular iron toxicity. Free Radic Biol Med 32:833–840

    Article  CAS  PubMed  Google Scholar 

  • Edelmann F, Gelbrich G, Düngen H-D, Fröhling S, Wachter R, Stahrenberg R, Binder L, Töpper A, Lashki DJ, Schwarz S, Herrmann-Lingen C, Löffler M, Hasenfuss G, Halle M, Pieske B (2011) Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the ex-DHF (exercise training in diastolic heart failure) pilot study. J Am Coll Cardiol 58:1780–1791

    Article  PubMed  Google Scholar 

  • Eirin A, Lerman A, Lerman LO (2014a) Mitochondrial injury and dysfunction in hypertension-induced cardiac damage. Eur Heart J 35:3258–3266

    Article  PubMed  PubMed Central  Google Scholar 

  • Eirin A, Williams BJ, Ebrahimi B, Zhang X, Crane JA, Lerman A, Textor SC, Lerman LO (2014b) Mitochondrial targeted peptides attenuate residual myocardial damage after reversal of experimental renovascular hypertension. J Hypertens 32:154–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson JR, Joiner M-lA, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham A-JL, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erikssen G, Liestøl K, Bjørnholt J, Thaulow E, Sandvik L, Erikssen J (1998) Changes in physical fitness and changes in mortality. Lancet 352:759–762

    Article  CAS  PubMed  Google Scholar 

  • Ezekowitz JA (2014) Time to energize coenzyme Q10 for patients with heart failure? JACC Heart Fail 2:650–652

    Article  PubMed  Google Scholar 

  • Flynn KE, Piña IL, Whellan DJ et al (2009) Effects of exercise training on health status in patients with chronic heart failure: Hf-action randomized controlled trial. JAMA 301:1451–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkers K, Wolaniuk J, Simonsen R, Morishita M, Vadhanavikit S (1985) Biochemical rationale and the cardiac response of patients with muscle disease to therapy with coenzyme Q10. Proc Natl Acad Sci U S A 82:4513–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsmark-Andrée P, Lee CP, Dallner G, Ernster L (1997) Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radic Biol Med 22:391–400

    Article  PubMed  Google Scholar 

  • Fotino AD, Thompson-Paul AM, Bazzano LA (2013) Effect of coenzyme Q(1)(0) supplementation on heart failure: a meta-analysis. Am J Clin Nutr 97:268–275

    Article  CAS  PubMed  Google Scholar 

  • Fukuta H, Goto T, Wakami K, Ohte N (2014) Effects of drug and exercise intervention on functional capacity and quality of life in heart failure with preserved ejection fraction: a meta-analysis of randomized controlled trials. Eur J Prev Cardiol 23:78–85

    Article  PubMed  Google Scholar 

  • Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, Frampton CM, Taylor KM, Smith RAJ, Murphy MP (2010) The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int 30:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Qian M, Campian JL, Marshall J, Zhou Z, Roberts AM, Kang YJ, Prabhu SD, Sun XF, Eaton JW (2010) Mitochondrial dysfunction may explain the cardiomyopathy of chronic iron overload. Free Radic Biol Med 49:401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheorghiade M, Larson CJ, Shah SJ, Greene SJ, Cleland JGF, Colucci WS, Dunnmon P, Epstein SE, Kim RJ, Parsey RV, Stockbridge N, Carr J, Dinh W, Krahn T, Kramer F, Wahlander K, Deckelbaum LI, Crandall D, Okada S, Senni M, Sikora S, Sabbah HN, Butler J (2016) Developing new treatments for heart failure: focus on the heart. Circ Heart Fail 9:e002727

    Article  PubMed  Google Scholar 

  • Gibson CM, Giugliano RP, Kloner RA, Bode C, Tendera M, Janosi A, Merkely B, Godlewski J, Halaby R, Korjian S, Daaboul Y, Chakrabarti AK, Spielman K, Neal BJ, Weaver WD (2015) EMBRACE STEMI study: a phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J 37:1296–1303

    PubMed  Google Scholar 

  • Goh KY, Qu J, Hong H, Liu T, Dell’Italia LJ, Wu Y, O’Rourke B, Zhou L (2016) Impaired mitochondrial network excitability in failing guinea-pig cardiomyocytes. Cardiovasc Res 109:79–89

    Article  PubMed  Google Scholar 

  • Gorski PA, Ceholski DK, Hajjar RJ (2015) Altered myocardial calcium cycling and energetics in heart failure – a rational approach for disease treatment. Cell Metab 21:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RAJ, Cochemé HM, Murphy MP, Dominiczak AF (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54:322–328

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Wu M, Guo R, Yan K, Lei J, Gao N, Yang M (2016) The architecture of the mammalian respirasome. Curr Probl Cardiol 537:639–643

    CAS  Google Scholar 

  • Haddad S, Wang Y, Galy B, Korf-Klingebiel M, Hirsch V, Baru AM, Rostami F, Reboll MR, Heineke J, Flögel U, Groos S, Renner A, Toischer K, Zimmermann F, Engeli S, Jordan J, Bauersachs J, Hentze MW, Wollert KC, Kempf T (2016) Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur Heart J. doi: 10.1093/eurheartj/ehw333

    Google Scholar 

  • Halestrap A (2005) Biochemistry: a pore way to die. Nature 434:578–579

    Article  CAS  PubMed  Google Scholar 

  • Handschin C, Spiegelman BM (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454:463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert SL, Lanza IR, Nair KS (2010) Mitochondrial DNA alterations and reduced mitochondrial function in aging. Mech Ageing Dev 131:451–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38

    Article  CAS  PubMed  Google Scholar 

  • Holzem KM, Vinnakota KC, Ravikumar VK, Madden EJ, Ewald GA, Dikranian K, Beard DA, Efimov IR (2016) Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts. FASEB J 30:2698–2707

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K, Utsumi H, Machida Y, Egashira K, Takeshita A (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86:152–157

    Article  CAS  PubMed  Google Scholar 

  • Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K-i, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535

    Article  CAS  PubMed  Google Scholar 

  • James AM, Sharpley MS, Manas A-RB, Frerman FE, Hirst J, Smith RAJ, Murphy MP (2007) Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem 282:14708–14718

    Article  CAS  PubMed  Google Scholar 

  • Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, Borodulin-Nadzieja L, Banasiak W, Polonski L, Filippatos G, McMurray JJV, Anker SD, Ponikowski P (2010) Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J 31:1872–1880

    Article  CAS  PubMed  Google Scholar 

  • Jankowska EA, Tkaczyszyn M, Suchocki T, Drozd M, von Haehling S, Doehner W, Banasiak W, Filippatos G, Anker SD, Ponikowski P (2016) Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: a meta-analysis of randomized controlled trials. Eur J Heart Fail 18:786–795

    Article  CAS  PubMed  Google Scholar 

  • Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23:734–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeffer N, Richard V, Thuillez C (1997) Delayed coronary endothelial protection 24 hours after preconditioning: role of free radicals. Circulation 96:2311–2316

    Article  CAS  PubMed  Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    Article  CAS  PubMed  Google Scholar 

  • Khechaduri A, Bayeva M, Chang H-C, Ardehali H (2013) Heme levels are increased in human failing hearts. J Am Coll Cardiol 61:1884–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjekshus J, Apetrei E, Barrios V, Böhm M, Cleland JGF, Cornel JH, Dunselman P, Fonseca C, Goudev A, Grande P, Gullestad L, Hjalmarson Å, Hradec J, Jánosi A, Kamenský G, Komajda M, Korewicki J, Kuusi T, Mach F, Mareev V, McMurray JJV, Ranjith N, Schaufelberger M, Vanhaecke J, van Veldhuisen DJ, Waagstein F, Wedel H, Wikstrand J (2007) Rosuvastatin in older patients with systolic heart failure. N Engl J Med 357:2248–2261

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg M (2010) Wanderings in bioenergetics and biomembranes. Biochim Biophys Acta 1797:5–6

    Google Scholar 

  • Kohlhaas M, Maack C (2011) Interplay of defective excitation-contraction coupling, energy starvation, and oxidative stress in heart failure. Trends Cardiovasc Med 21:69–73

    Article  CAS  PubMed  Google Scholar 

  • Kohlhaas M, Maack C (2013) Calcium release microdomains and mitochondria. Cardiovasc Res 98:259–268

    Article  CAS  PubMed  Google Scholar 

  • Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, O'Rourke B, Maack C (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613

    Google Scholar 

  • Kremastinos DT, Farmakis D, Aessopos A, Hahalis G, Hamodraka E, Tsiapras D, Keren A (2010) β-thalassemia cardiomyopathy. History, present considerations, and future perspectives. Circ Heart Fail 3:451–458

    Article  PubMed  Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Hoppel CL (2008) Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat. Biomed Biochim Acta Bioenerg 1777:1020–1027

    Article  CAS  Google Scholar 

  • Leszek P, Sochanowicz B, Szperl M, Kolsut P, Brzóska K, Piotrowski W, Rywik TM, Danko B, Polkowska-Motrenko H, Różański JM, Kruszewski M (2012) Myocardial iron homeostasis in advanced chronic heart failure patients. Int J Cardiol 159:47–52

    Article  PubMed  Google Scholar 

  • Leszek P, Sochanowicz B, Brzóska K, Danko B, Kraj L, Kuśmierczyk M, Piotrowski W, Sobieszczańska-Małek M, Rywik TM, Polkowska-Motrenko H, Kruszewski M (2015) Does myocardial iron load determine the severity of heart insufficiency? Int J Cardiol 182:191–193

    Article  PubMed  Google Scholar 

  • Lill R (2009) Function and biogenesis of iron–sulphur proteins. Curr Probl Cardiol 460:831–838

    CAS  Google Scholar 

  • Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4

    Article  CAS  PubMed  Google Scholar 

  • Liu T, O’Rourke B (2008) Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res 103:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lygate CA, Aksentijevic D, Dawson D, Ten Hove M, Phillips D, de Bono JP, Medway DJ, Sebag-Montefiore LM, Hunyor I, Channon K, Clarke K, Zervou S, Watkins H, Balaban R, Neubauer S (2013) Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ Res 112:945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyseng-Williamson KA, Keating GM (2009) Ferric carboxymaltose. Drugs 69:739–756

    Article  CAS  PubMed  Google Scholar 

  • Maack C (2016) Orphaned mitochondria in heart failure. Cardiovasc Res 109:6–8

    Article  PubMed  Google Scholar 

  • Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B (2006) Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res 99:172–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maack C, O’Rourke B, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maack C, Dabew ER, Hohl M, Schafers HJ, Bohm M (2009) Endogenous activation of mitochondrial KATP channels protects human failing myocardium from hydroxyl radical-induced stunning. Circ Res 105:811–817

    Article  CAS  PubMed  Google Scholar 

  • Maack C, Kartes T, Kilter H, Schäfers H-J, Nickenig G, Böhm M, Laufs U (2003) Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation 108:1567–1574

    Google Scholar 

  • Maeder MT, Khammy O, dos Remedios C, Kaye DM (2011) Myocardial and systemic iron depletion in heart failure: implications for anemia accompanying heart failure. J Am Coll Cardiol 58:474–480

    Article  CAS  PubMed  Google Scholar 

  • Marín-García J (2012) Mitochondria and their role in cardiovascular disease. Springer, Boston

    Google Scholar 

  • Marín-García J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52:103–110

    Article  PubMed  Google Scholar 

  • McKnight SL (2010) On getting there from here. Science 330:1338–1339

    Article  CAS  PubMed  Google Scholar 

  • McMurray JJV, Dunselman P, Wedel H, Cleland JGF, Lindberg M, Hjalmarson A, Kjekshus J, Waagstein F, Apetrei E, Barrios V, Böhm M, Kamenský G, Komajda M, Mareev V, Wikstrand J, Group CS (2010) Coenzyme Q10, rosuvastatin, and clinical outcomes in heart failure: a pre-specified substudy of CORONA (controlled rosuvastatin multinational study in heart failure). J Am Coll Cardiol 56:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Melenovsky V, Petrak J, Mracek T, Benes J, Borlaug BA, Nuskova H, Pluhacek T, Spatenka J, Kovalcikova J, Drahota Z, Kautzner J, Pirk J, Houstek J (2016) Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur J Heart Fail. doi:10.1002/ejhf.640

    Google Scholar 

  • Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, Wahlers T, Hoppe UC (2009) Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation 119:2435–2443

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P, Moyle J (1967) Chemiosmotic hypothesis of oxidative phosphorylation. Curr Probl Cardiol 213:137–139

    CAS  Google Scholar 

  • Molyneux SL, Florkowski CM, George PM, Pilbrow AP, Frampton CM, Lever M, Richards AM (2008) Coenzyme Q10. J Am Coll Cardiol 52:1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Montini G, Malaventura C, Salviati L (2008) Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 358:2849–2850

    Article  CAS  PubMed  Google Scholar 

  • Mortensen SA (2015) Coenzyme Q10: will this natural substance become a guideline-directed adjunctive therapy in heart failure? JACC Heart Fail 3:270–271

    Article  PubMed  Google Scholar 

  • Mortensen SA, Vadhanavikit S, Muratsu K, Folkers K (1990) Coenzyme Q10: clinical benefits with biochemical correlates suggesting a scientific breakthrough in the management of chronic heart failure. Free Radic Biol Med 12:155–162

    CAS  Google Scholar 

  • Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, Alehagen U, Steurer G, Littarru GP (2014) The effect of coenzyme Q10 on Morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2:641–649

    Article  PubMed  Google Scholar 

  • Mugoni V, Postel R, Catanzaro V, De Luca E, Turco E, Digilio G, Silengo L, Murphy Michael P, Medana C, Stainier Didier YR, Bakkers J, Santoro MM (2013) Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell 152:504–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Münzel T, Gori T, Keaney JF Jr, Maack C, Daiber A (2015) Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J 36:2555–2564

    Article  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2016) Understanding and preventing mitochondrial oxidative damage. Biochem Soc Trans 44:1219–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer S (2007) The failing heart – an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  • Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    Article  CAS  PubMed  Google Scholar 

  • Nickel A, Löffler J, Maack C (2013) Myocardial energetics in heart failure. Basic Res Cardiol 108:358

    Article  PubMed  CAS  Google Scholar 

  • Nickel A, Kohlhaas M, Maack C (2014) Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol 73C:26–33

    Article  CAS  Google Scholar 

  • Nickel AG, von Hardenberg A, Hohl M, Löffler JR, Kohlhaas M, Becker J, Reil J-C, Kazakov A, Bonnekoh J, Stadelmaier M, Puhl S-L, Wagner M, Bogeski I, Cortassa S, Kappl R, Pasieka B, Lafontaine M, Lancaster CRD, Blacker TS, Hall AR, Duchen MR, Kästner L, Lipp P, Zeller T, Müller C, Knopp A, Laufs U, Böhm M, Hoth M, Maack C (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484

    Article  CAS  PubMed  Google Scholar 

  • Nolte K, Herrmann-Lingen C, Wachter R (2015) Effects of exercise training on different quality of life dimensions in heart failure with preserved ejection fraction: the Ex-DHF-P trial. Eur J Prev Cardiol 22:582–593

    Article  PubMed  Google Scholar 

  • O’Connor CM, Whellan DJ, Lee KL et al (2009) Efficacy and safety of exercise training in patients with chronic heart failure: Hf-action randomized controlled trial. JAMA 301:1439–1450

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2010) Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med 48:1286–1295

    Article  CAS  PubMed  Google Scholar 

  • Patten RD, Hall-Porter MR (2009) Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail 2:138–144

    Article  PubMed  Google Scholar 

  • Payne RM (2011) The heart in Friedreich’s ataxia: basic findings and clinical implications. Prog Pediatr Cardiol 31:103–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116

    Article  CAS  PubMed  Google Scholar 

  • Ponikowski P, van Veldhuisen DJ, Comin Colet J, Ertl G, Komajda M, Mareev V, McDonagh T, Parkhomenko A, Tavazzi L, Levesque V, Mori C, Roubert B, Filippatos G, Ruschitzka F, Anker SD (2015) Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J 36:657–668

    Article  CAS  PubMed  Google Scholar 

  • Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola V-P, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Filippatos G, McMurray JJV, Aboyans V, Achenbach S, Agewall S, Al-Attar N, Atherton JJ, Bauersachs J, John Camm A, Carerj S, Ceconi C, Coca A, Elliott P, Erol Ç, Ezekowitz J, Fernández-Golfín C, Fitzsimons D, Guazzi M, Guenoun M, Hasenfuss G, Hindricks G, Hoes AW, Iung B, Jaarsma T, Kirchhof P, Knuuti J, Kolh P, Konstantinides S, Lainscak M, Lancellotti P, Lip GYH, Maisano F, Mueller C, Petrie MC, Piepoli MF, Priori SG, Torbicki A, Tsutsui H, van Veldhuisen DJ, Windecker S, Yancy C, Zamorano JL, Zamorano JL, Aboyans V, Achenbach S, Agewall S, Badimon L, Barón-Esquivias G, Baumgartner H, Bax JJ, Bueno H, Carerj S, Dean V, Erol Ç, Fitzsimons D, Gaemperli O, Kirchhof P, Kolh P, Lancellotti P, Lip GYH, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Roffi M, Torbicki A, Vaz Carneiro A, Windecker S, Sisakian HS, Isayev E, Kurlianskaya A, Mullens W, Tokmakova M, Agathangelou P, Melenovsky V, Wiggers H, Hassanein M, Uuetoa T, Lommi J, Kostovska ES, Juillière Y, Aladashvili A, Luchner A, Chrysohoou C, Nyolczas N, Thorgeirsson G, Marc Weinstein J, Di Lenarda A, Aidargaliyeva N, Bajraktari G, Beishenkulov M, Kamzola G, Abdel-Massih T, Čelutkienė J, Noppe S, Cassar A, Vataman E, Abir-Khalil S, van Pol P, Mo R, Straburzyńska-Migaj E, Fonseca C, Chioncel O, Shlyakhto E, Otasevic P, Goncalvesová E, Lainscak M, Díaz Molina B, Schaufelberger M, Suter T, Yılmaz MB, Voronkov L, Davies C (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  • Redfearn ER, Burgos J (1966) Ubiquinone (coenzyme Q) and the respiratory chain. Nature 209:711–713

    Article  CAS  PubMed  Google Scholar 

  • Ristow M (2014) Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med 20:709–711

    Article  CAS  PubMed  Google Scholar 

  • Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Blüher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci 106:8665–8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Cuenca S, Cocheme HM, Logan A (2010) Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radic Biol Med 48:161–172

    Article  CAS  PubMed  Google Scholar 

  • Rötig A, Appelkvist E-L, Geromel V, Chretien D, Kadhom N, Edery P, Lebideau M, Dallner G, Munnich A, Ernster L, Rustin P (2000) Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356:391–395

    Article  PubMed  Google Scholar 

  • Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K (2016) Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail 9:e002206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA (2011) Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem 286:10605–10617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    Article  CAS  PubMed  Google Scholar 

  • Schwarz K, Siddiqi N, Singh S, Neil CJ, Dawson DK, Frenneaux MP (2014) The breathing heart – mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol 171:134–143

    Article  PubMed  Google Scholar 

  • Sebastiani M, Giordano C, Nediani C, Travaglini C, Borchi E, Zani M, Feccia M, Mancini M, Petrozza V, Cossarizza A, Gallo P, Taylor RW, d’Amati G (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50:1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Fonarow GC, Butler J, Ezekowitz JA, Felker GM (2016) Coenzyme Q10 and heart failure: a state-of-the-art review. Circ Heart Fail 9:e002639

    Article  CAS  PubMed  Google Scholar 

  • Sharov VG, Todor AV, Silverman N, Goldstein S, Sabbah HN (2000) Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 32:2361–2367

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Hartley RC, Cocheme HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352

    Article  CAS  PubMed  Google Scholar 

  • Sobel BE, Spann JF, Pool PE, Sonnenblick EH, Braunwald E (1967) Normal oxidative phosphorylation in mitochondria from the failing heart. Circ Res 21:355–364

    Article  CAS  Google Scholar 

  • Starling RC, Starling RC, Hammer DF, Hammer DF, Altschuld RA, Altschuld RA (1998) Human myocardial ATP content and in vivo contractile function. Mol Cell Biochem 180:171–177

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  • Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA (2016) The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail 18:762–773

    Article  PubMed  Google Scholar 

  • Supinski GS, Murphy MP, Callahan LA (2009) MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 297:R1095–R1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto HH (2008) Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal 10:601–620

    Article  CAS  PubMed  Google Scholar 

  • Szeto HH (2014) First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 171:2029–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto HH, Schiller PW (2011) Novel therapies targeting inner mitochondrial membrane – from discovery to clinical development. Pharm Res 28:2669–2679

    Article  CAS  PubMed  Google Scholar 

  • Szeto HH, Lovelace JL, Fridland G, Soong Y (2001) In vivo pharmacokinetics of selective μ-opioid peptide agonists. J Pharmacol Exp Ther 298:57–61

    CAS  PubMed  Google Scholar 

  • Taegtmeyer H (2007) Fueling the heart: multiple roles for cardiac metabolism. Springer, London, pp 1157–1175

    Google Scholar 

  • Tanner MA, Galanello R, Dessi C, Smith GC, Westwood MA, Agus A, Roughton M, Assomull R, Nair SV, Walker JM, Pennell DJ (2007) A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. Circulation 115:1876–1884

    Article  CAS  PubMed  Google Scholar 

  • Ulbrich AZ, Angarten VG, Netto AS, Sties SW (2016) Comparative effects of high intensity interval training versus moderate intensity continuous training on quality of life in patients with heart failure: study protocol for a randomized controlled trial. Clin Trials Regul Sci Cardiol 13:21–28

    Article  Google Scholar 

  • Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273:18092–18098

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc Res 79(2):208–217

    Article  CAS  PubMed  Google Scholar 

  • Vergeade A, Mulder P, Vendeville-Dehaudt C, Estour F, Fortin D, Ventura-Clapier R, Thuillez C, Monteil C (2010) Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: prevention by the targeted antioxidant MitoQ. Free Radic Biol Med 49:748–756

    Article  CAS  PubMed  Google Scholar 

  • Viatchenko-Karpinski S, Kornyeyev D, El-Bizri N, Budas G, Fan P, Jiang Z, Yang J, Anderson ME, Shryock JC, Chang C-P, Belardinelli L, Yao L (2014) Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes. J Mol Cell Cardiol 76:247–256

    Article  CAS  PubMed  Google Scholar 

  • von Haehling S, Jankowska EA, van Veldhuisen DJ, Ponikowski P, Anker SD (2015) Iron deficiency and cardiovascular disease. Nat Rev Cardiol 12:659–669

    Article  CAS  Google Scholar 

  • Wagner S, Rokita AG, Anderson ME, Maier LS (2013) Redox regulation of sodium and calcium handling. Antioxid Redox Signal 18:1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitnall M, Suryo Rahmanto Y, Sutak R, Xu X, Becker EM, Mikhael MR, Ponka P, Richardson DR (2008) The MCK mouse heart model of Friedreich’s ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proc Natl Acad Sci 105:9757–9762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu KY, Zweier JL, Becker LC (1997) Hydroxyl radical inhibits sarcoplasmic reticulum Ca2+−ATPase function by direct attack on the ATP binding site. Circ Res 80:76–81

    Article  CAS  PubMed  Google Scholar 

  • Ying W (2008) NAD +/NADH and NADP +/NADPH in Cellular Functions and Cell Death: Regulation and Biological Consequences. Antioxid Redox Signal 10:179–206

    Google Scholar 

  • Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:154–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhang M, Brewer AC, Brewer AC, Schroder K, Schröder K, Santos CXC, Santos CXC, Grieve DJ, Grieve DJ, Wang M, Wang M, Anilkumar N, Anilkumar N, Yu B, Yu B, Dong X, Dong X, Walker SJ, Walker SJ, Brandes RP, Brandes RP, Shah AM, Shah AM (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci 107:18121–18126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    Article  CAS  PubMed  Google Scholar 

  • Zick M, Rabl R, Reichert AS (2009) Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta 1793:5–19

    Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    Article  CAS  PubMed  Google Scholar 

  • Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research of C. Maack was and is supported by the Deutsche Forschungsgemeinschaft (DFG; Heisenberg Programm; SFB-894; Ma 2528/7-1), Deutsche Herzstiftung (Margret Elisabeth Strauß-Projektförderung) and Corona-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Maack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

von Hardenberg, A., Maack, C. (2016). Mitochondrial Therapies in Heart Failure. In: Bauersachs, J., Butler, J., Sandner, P. (eds) Heart Failure. Handbook of Experimental Pharmacology, vol 243. Springer, Cham. https://doi.org/10.1007/164_2016_123

Download citation

Publish with us

Policies and ethics