Skip to main content
Log in

Mechanisms, time course and predictability of premature ventricular contractions cardiomyopathy—an update on its development and resolution

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Frequent premature ventricular contractions (PVCs) associated left ventricular systolic dysfunction (LVSD) is a well-known clinical scenario and numerous predictors for cardiomyopathy (CMP) development have been already thoroughly described. It may present as a "pure" form of dissynchrony-induced cardiomyopathy or it may be an aggravating component of a multifactorial structural heart disease. However, the precise risk to develop PVC-induced CMP (which would allow for tailored-patient monitoring and/or early treatment) and the degree of CMP reversibility after PVC suppression/elimination (which may permit appropriate candidate selection for therapy) are unclear. Moreover, there is limited data regarding the time course of CMP development and resolution after arrhythmia suppression. Even less known are the other components of PVC-induced CMP, such as right ventricular (RV) and atrial myopathies. This review targets to synthetize the most recent information in this regard and bring a deeper understanding of this heart failure scenario. The mechanisms, time course (both in experimental models and clinical experiences) and predictors of reverse-remodelling after arrhythmia suppression are described. The novel experience hereby presented may aid everyday clinical practice, promoting a new paradigm involving more complex, multi-level and multi-modality evaluation and possible earlier intervention at least in some patient subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and materials will be provided upon request.

Code availability

Not applicable.

References

  1. Panizo JG, Barra S, Mellor G, Heck P, Agarwal S (2018) Premature ventricular complex-induced cardiomyopathy. Arrhythmia Electrophysiol Rev. https://doi.org/10.15420/aer.2018.23.2

    Article  Google Scholar 

  2. Yalin K, Gölcük E (2017) Frequent premature ventricular contractions and cardiomyopathy, chicken and egg situation. J Atr Fibrillation. https://doi.org/10.4022/jafib.1674

    Article  PubMed  PubMed Central  Google Scholar 

  3. Olgun H et al (2011) The role of interpolation in PVC-induced cardiomyopathy. Hear Rhythm 8(7):1046–1049. https://doi.org/10.1016/j.hrthm.2011.02.034

    Article  Google Scholar 

  4. Tan AY et al (2020) Persistent proarrhythmic neural remodeling despite recovery from premature ventricular contraction-induced cardiomyopathy. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2019.10.046

    Article  PubMed  PubMed Central  Google Scholar 

  5. Latchamsetty R, Bogun F (2016) Premature ventricular complex-induced cardiomyopathy. Rev Esp Cardiol 69(4):365–369

    Article  Google Scholar 

  6. Russell K et al (2013) Assessment of wasted myocardial work: A novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am J Physiol - Hear Circ Physiol. https://doi.org/10.1152/ajpheart.00191.2013

    Article  Google Scholar 

  7. Nguyên UC, Verzaal NJ, van Nieuwenhoven FA, Vernooy K, Prinzen FW (2018) Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace. https://doi.org/10.1093/europace/euy035

    Article  PubMed  Google Scholar 

  8. Cha YM, Lee GK, Klarich KW, Grogan M (2012) Premature ventricular contraction-induced cardiomyopathy: A treatable condition. Circ Arrhythmia Electrophysiol 5(1):229–236. https://doi.org/10.1161/CIRCEP.111.963348

    Article  Google Scholar 

  9. Hamon D et al (2017) Premature ventricular contraction coupling interval variability destabilizes cardiac neuronal and electrophysiological control. Circ Arrhythmia Electrophysiol. https://doi.org/10.1161/CIRCEP.116.004937

    Article  Google Scholar 

  10. Sun Y et al (2003) The influence of premature ventricular contractions on left ventricular function in asymptomatic children without structural heart disease: An echocardiographic evaluation. Int J Cardiovasc Imaging 19(4):295–299. https://doi.org/10.1023/A:1025418531853

    Article  PubMed  Google Scholar 

  11. Wang Y et al (2014) Cellular mechanism of premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 11(11):2064–2072. https://doi.org/10.1016/j.hrthm.2014.07.022

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huizar JF et al (2011) Left ventricular systolic dysfunction induced by Ventricular Ectopy: a novel model for premature ventricular contraction-induced cardiomyopathy. Circ Arrhythmia Electrophysiol 4(4):543–549. https://doi.org/10.1161/CIRCEP.111.962381

    Article  Google Scholar 

  13. Akoum NW, Daccarett M, Wasmund SL, Hamdan MH (2011) An animal model for ectopy-induced cardiomyopathy. PACE - Pacing Clin Electrophysiol. https://doi.org/10.1111/j.1540-8159.2010.02947.x

    Article  PubMed  Google Scholar 

  14. Walters TE et al (2020) Dyssynchrony and fibrosis persist after resolution of cardiomyopathy in a swine premature ventricular contraction model. JACC Clin Electrophysiol. https://doi.org/10.1016/j.jacep.2020.06.020

    Article  PubMed  Google Scholar 

  15. Ghannam M et al (2020) Risk stratification in patients with frequent premature ventricular complexes in the absence of known heart disease. Hear Rhythm 17(3):423–430. https://doi.org/10.1016/j.hrthm.2019.09.027

    Article  Google Scholar 

  16. Penela D et al (2019) Influence of myocardial scar on the response to frequent premature ventricular complex ablation. Heart. https://doi.org/10.1136/heartjnl-2018-313452

    Article  PubMed  Google Scholar 

  17. Playford D, Subbiah R, Kuchar D, Aggarwal A, Vandenberg JI, Fatkin D (2012) R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. JAC 60(16):1566–1573. https://doi.org/10.1016/j.jacc.2012.05.050

    Article  CAS  Google Scholar 

  18. Nair K et al (2012) Escape capture bigeminy: Phenotypic marker of cardiac sodium channel voltage sensor mutation R222Q. Hear Rhythm 9(10):1681-1688.e1. https://doi.org/10.1016/j.hrthm.2012.06.029

    Article  Google Scholar 

  19. Calloe K et al (2018) Multifocal atrial and ventricular premature contractions with an increased risk of dilated cardiomyopathy caused by a Na(v)1.5 gain-of-function mutation (G213D). Int J Cardiol 257:160–167. https://doi.org/10.1016/j.ijcard.2017.11.095

    Article  PubMed  Google Scholar 

  20. Leventopoulos G, Perperis A, Karelas D, Almpanis G (2021) You cannot ablate the Lernaean Hydra SCN5A mutation in a patient with multifocal ectopic Purkinje-related premature contractions syndrome treated with Flecainide and an implant of a subcutaneous defibrillator-a case report. European Heart J Case Report. https://doi.org/10.1093/ehjcr/ytab158

    Article  Google Scholar 

  21. Zakrzewska-Koperska J et al (2018) Rapid and effective response of the R222Q SCN5A to quinidine treatment in a patient with Purkinje-related ventricular arrhythmia and familial dilated cardiomyopathy: a case report. BMC Med Genet. https://doi.org/10.1186/s12881-018-0599-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Doisne N et al (2020) A novel gain-of-function mutation in SCN5A responsible for multifocal ectopic Purkinje-related premature contractions. Hum Mutat 41(4):850–859. https://doi.org/10.1002/humu.23981

    Article  CAS  PubMed  Google Scholar 

  23. Berruezo A, Efimova E, Acosta J, Jáuregui B (2018) Isolated, premature ventricular complex–induced right ventricular dysfunction mimicking arrhythmogenic right ventricular cardiomyopathy. Hear Case Reports 4(6):222–226. https://doi.org/10.1016/j.hrcr.2018.02.006

    Article  Google Scholar 

  24. Selvaraj RJ (2013) Premature ventricular complexes and left atrial appendage dysfunction—another head on a many-headed hydra? Indian Pacing Electrophysiol J. https://doi.org/10.1016/S0972-6292(16)30646-5

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marzilli M, Sabbah HN, Stein PD (1980) Mitral regurgitation in ventricular premature contractions. The role of the papillary muscle. Chest 77(6):736–740

    Article  CAS  Google Scholar 

  26. Tanaka Y et al (2016) Diffuse fibrosis leads to a decrease in unipolar voltage: Validation in a swine model of premature ventricular contraction-induced cardiomyopathy. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2015.09.025

    Article  Google Scholar 

  27. Tan AY et al (2016) Impact of ventricular ectopic burden in a premature ventricular contraction-induced cardiomyopathy animal model. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2015.11.016

    Article  Google Scholar 

  28. Walters TE et al (2018) Left ventricular dyssynchrony predicts the cardiomyopathy associated with premature ventricular contractions. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.09.059

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niwano S et al (2009) Prognostic significance of frequent premature ventricular contractions originating from the ventricular outflow tract in patients with normal left ventricular function. Heart 95(15):1230–1237. https://doi.org/10.1136/hrt.2008.159558

    Article  CAS  PubMed  Google Scholar 

  30. Lee AKY et al (2019) Outcomes of untreated frequent premature ventricular complexes with normal left ventricular function. Heart 105(18):1408–1413. https://doi.org/10.1136/heartjnl-2019-314922

    Article  PubMed  Google Scholar 

  31. Yokokawa M et al (2012) Relation of symptoms and symptom duration to premature ventricular complex-induced cardiomyopathy. Hear Rhythm 9(1):92–95. https://doi.org/10.1016/j.hrthm.2011.08.015

    Article  Google Scholar 

  32. Han FT (2021) Empiric ablation of asymptomatic PVCs when there is greater than 20% burden but normal left ventricular function-An argument in support of catheter ablation. Hear Rhythm O2. https://doi.org/10.1016/j.hroo.2021.02.004

    Article  Google Scholar 

  33. Sadron Blaye-Felice M et al (2016) Premature ventricular contraction-induced cardiomyopathy: Related clinical and electrophysiologic parameters. Hear Rhythm 13(1):103–110. https://doi.org/10.1016/j.hrthm.2015.08.025

    Article  Google Scholar 

  34. Park Y et al (2014) Frequent premature ventricular complex is associated with left atrial enlargement in patients with normal left ventricular ejection fraction. PACE - Pacing Clin Electrophysiol. https://doi.org/10.1111/pace.12447

    Article  PubMed  Google Scholar 

  35. Chen YS et al (2020) Atrial and ventricular response to treatment of premature ventricular complexes. Acta Cardiol Sin 36(5):475–482. https://doi.org/10.6515/ACS.202009_36(5).20200307A

    Article  PubMed  PubMed Central  Google Scholar 

  36. G. W. Moe, T. P. Stopps, R. J. Howard, and P. W. Armstrong, “Early recovery from heart failure: Insights into the pathogenesis of experimental chronic pacing-induced heart failure,” J. Lab. Clin. Med., 1988.

  37. Moe GW, Grima EA, Howard RJ, Seth R, Armstrong PW (1994) Left ventricular remodelling and disparate changes in contractility and relaxation during the development of and recovery from experimental heart failure. Cardiovasc Res. https://doi.org/10.1093/cvr/28.1.66

    Article  PubMed  Google Scholar 

  38. Howard RJ, Stopps TP, Moe GW, Gotlieb A, Armstrong PW (1988) Recovery from heart failure: structural and functional analysis in a canine model. Can J Physiol Pharmacol. https://doi.org/10.1139/y88-246

    Article  PubMed  Google Scholar 

  39. Spinale FG et al (1995) LV and myocyte structure and function after early recovery from tachycardia-induced cardiomyopathy. Am J Physiol 268(2 Pt 2):H836–H847

    CAS  PubMed  Google Scholar 

  40. Yarlagadda RK et al (2005) Reversal of cardiomyopathy in patients with repetitive monomorphic ventricular ectopy originating from the right ventricular outflow tract. Circulation 112(8):1092–1097. https://doi.org/10.1161/CIRCULATIONAHA.105.546432

    Article  PubMed  Google Scholar 

  41. Hasdemir C et al (2011) Tachycardia-induced cardiomyopathy in patients with idiopathic ventricular arrhythmias: the incidence, clinical and electrophysiologic characteristics, and the predictors. J Cardiovasc Electrophysiol 22(6):663–668. https://doi.org/10.1111/j.1540-8167.2010.01986.x

    Article  PubMed  Google Scholar 

  42. Deyell MW et al (2012) Predictors of recovery of left ventricular dysfunction after ablation of frequent ventricular premature depolarizations. Hear Rhythm 9(9):1465–1472. https://doi.org/10.1016/j.hrthm.2012.05.019

    Article  Google Scholar 

  43. Hasdemir C, Kartal Y, Simsek E, Yavuzgil O, Aydin M, Can LH (2013) Time course of recovery of left ventricular systolic dysfunction in patients with premature ventricular contraction-induced cardiomyopathy. Pacing Clin Electrophysiol 36(5):612–617. https://doi.org/10.1111/pace.12087

    Article  PubMed  Google Scholar 

  44. Yokokawa M et al (2013) Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Hear Rhythm 10(2):172–175. https://doi.org/10.1016/j.hrthm.2012.10.011

    Article  Google Scholar 

  45. Penela D et al (2013) Neurohormonal, structural, and functional recovery pattern after premature ventricular complex ablation is independent of structural heart disease status in patients with depressed left ventricular ejection fraction: a prospective multicenter study. J Am Coll Cardiol 62(13):1195–1202. https://doi.org/10.1016/j.jacc.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  46. Wijnmaalen AP et al (2010) Beneficial effects of catheter ablation on left ventricular and right ventricular function in patients with frequent premature ventricular contractions and preserved ejection fraction. Heart. https://doi.org/10.1136/hrt.2009.188722

    Article  PubMed  Google Scholar 

  47. Kanat S et al (2019) Left atrial function is improved in short-term follow-up after catheter ablation of outflow tract premature ventricular complexes. Med. https://doi.org/10.3390/medicina55060241

    Article  Google Scholar 

  48. Sen J, Amerena J (2019) Premature ventricular contraction-induced dilated cardiomyopathy: a case report. Eur Hear J Case Reports. https://doi.org/10.1093/ehjcr/ytz016

    Article  Google Scholar 

  49. Al-Khatib SM et al (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. https://doi.org/10.1161/CIR.0000000000000549

    Article  PubMed  PubMed Central  Google Scholar 

  50. Priori SG, Blomström-Lundqvist C, Mazzanti A (2015) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 8(9):746–837. https://doi.org/10.1093/europace/eul108

    Article  Google Scholar 

  51. Hamon D et al (2019) Premature ventricular contraction diurnal profiles predict distinct clinical characteristics and beta-blocker responses. J Cardiovasc Electrophysiol 30(6):836–843. https://doi.org/10.1111/jce.13944

    Article  PubMed  Google Scholar 

  52. Ling Z et al (2014) Radiofrequency ablation versus antiarrhythmic medication for treatment of ventricular premature beats from the right ventricular outflow tract prospective randomized study. Circ Arrhythmia Electrophysiol 7(2):237–243. https://doi.org/10.1161/CIRCEP.113.000805

    Article  CAS  Google Scholar 

  53. Zhong L et al (2014) Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions : A single-center retrospective study. Hear Rhythm 11(2):187–193. https://doi.org/10.1016/j.hrthm.2013.10.033

    Article  Google Scholar 

  54. H. J. F. et al (2021) Outcomes of premature ventricular contraction-cardiomyopathy in the veteran population. JACC Clin Electrophysiol 7(3):380–390. https://doi.org/10.1016/j.jacep.2020.08.028

    Article  Google Scholar 

  55. Martens P et al (2019) Sacubitril/valsartan reduces ventricular arrhythmias in parallel with left ventricular reverse remodeling in heart failure with reduced ejection fraction. Clin Res Cardiol 108(10):1074–1082. https://doi.org/10.1007/s00392-019-01440-y

    Article  CAS  PubMed  Google Scholar 

  56. Komoriya M et al (2008) Long-term prognosis for non-ischemic heart disease patients with premature ventricular contraction and non-sustained ventricular tachycardia. J Arrhythmia 24(1):18–25. https://doi.org/10.1016/S1880-4276(08)80003-8

    Article  Google Scholar 

  57. L. Capulzini et al., “Acute and one year outcome of premature ventricular contraction ablation guided by contact force and automated pacemapping software,” no. September 2018, pp. 542–549, 2019, doi: https://doi.org/10.1002/joa3.12194.

  58. Latchamsetty R et al (2015) Multicenter outcomes for catheter ablation of idiopathic premature ventricular complexes. JACC Clin Electrophysiol 1(3):116–123. https://doi.org/10.1016/j.jacep.2015.04.005

    Article  PubMed  Google Scholar 

  59. Baser K et al (2015) Recurrence of PVCs in patients with PVC-induced cardiomyopathy. Hear Rhythm 12(7):1519–1523. https://doi.org/10.1016/j.hrthm.2015.03.027

    Article  Google Scholar 

  60. Latchamsetty R, Bogun F (2017) Premature ventricular complex ablation in structural heart disease. Cardiac Electrophysiology Clinics. https://doi.org/10.1016/j.ccep.2016.10.010

    Article  PubMed  Google Scholar 

  61. Berruezo A et al (2019) Mortality and morbidity reduction after frequent premature ventricular complexes ablation in patients with left ventricular systolic dysfunction. Europace. https://doi.org/10.1093/europace/euz027

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sarrazin JF et al (2009) Impact of radiofrequency ablation of frequent post-infarction premature ventricular complexes on left ventricular ejection fraction. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2009.08.004

    Article  Google Scholar 

  63. Penela D et al (2015) Ablation of frequent PVC in patients meeting criteria for primary prevention ICD implant: Safety of withholding the implant. Heart Rhythm 12(12):2434–2442. https://doi.org/10.1016/j.hrthm.2015.09.011

    Article  PubMed  Google Scholar 

  64. Zang M, Zhang T, Mao J, Zhou S, He B (2014) Beneficial effects of catheter ablation of frequent premature ventricular complexes on left ventricular function. Heart. https://doi.org/10.1136/heartjnl-2013-305175

    Article  PubMed  Google Scholar 

  65. Baman TS et al (2010) Relationship between burden of premature ventricular complexes and left ventricular function. Hear Rhythm 7(7):865–869. https://doi.org/10.1016/j.hrthm.2010.03.036

    Article  Google Scholar 

  66. Lakkireddy D et al (2012) Radiofrequency ablation of premature ventricular ectopy improves the efficacy of cardiac resynchronization therapy in nonresponders. J Am Coll Cardiol 60(16):1531–1539. https://doi.org/10.1016/j.jacc.2012.06.035

    Article  PubMed  Google Scholar 

  67. Marie SBF et al (2016) Reversal of left ventricular dysfunction after ablation of premature ventricular contractions related parameters, paradoxes and exceptions to the rule. Int J Cardiol. https://doi.org/10.1016/j.ijcard.2016.07.005

    Article  Google Scholar 

  68. Abdelhamid MA, Samir R (2018) Reversal of premature ventricular complexes induced cardiomyopathy Influence of concomitant structural heart disease. Indian Heart J. https://doi.org/10.1016/j.ihj.2017.08.025

    Article  PubMed  Google Scholar 

  69. Ruwald MH et al (2014) Association between frequency of atrial and ventricular ectopic beats and biventricular pacing percentage and outcomes in patients with cardiac resynchronization therapy. J Am Coll Cardiol 64(10):971–981. https://doi.org/10.1016/j.jacc.2014.06.1177

    Article  PubMed  Google Scholar 

  70. Penela D et al (2013) Neurohormonal, structural, and functional recovery pattern after premature ventricular complex ablation is independent of structural heart disease status in patients with depressed left ventricular ejection fraction: A prospective multicenter study. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2013.06.012

    Article  PubMed  Google Scholar 

  71. Penela D et al (2015) Ablation of frequent PVC in patients meeting criteria for primary prevention ICD implant: Safety of withholding the implant. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2015.09.011

    Article  Google Scholar 

  72. Penela D et al (2021) Premature ventricular complex site of origin and ablation outcomes in patients with prior myocardial infarction. Hear Rhythm 18(1):27–33. https://doi.org/10.1016/j.hrthm.2020.07.037

    Article  Google Scholar 

  73. Penela D et al (2017) Clinical recognition of pure premature ventricular complex-induced cardiomyopathy at presentation. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2017.07.025

    Article  Google Scholar 

  74. Campos B et al (2012) New unipolar electrogram criteria to identify irreversibility of nonischemic left ventricular cardiomyopathy. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2012.08.977

    Article  PubMed  Google Scholar 

  75. Penela D et al (2020) Influence of baseline QRS on the left ventricular ejection fraction recovery after frequent premature ventricular complex ablation. Europace 22(2):274–280. https://doi.org/10.1093/europace/euz330

    Article  PubMed  Google Scholar 

  76. Del Carpio Munoz F et al (2011) Characteristics of premature ventricular complexes as correlates of reduced left ventricular systolic function: study of the burden, duration, coupling interval, morphology and site of origin of PVCs. J Cardiovasc Electrophysiol 22(7):791–798. https://doi.org/10.1111/j.1540-8167.2011.02021.x

    Article  PubMed  Google Scholar 

  77. Baman TS et al (2010) Relationship between burden of premature ventricular complexes and left ventricular function. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2010.03.036

    Article  Google Scholar 

  78. Carballeira Pol L et al (2014) Ventricular premature depolarization QRS duration as a new marker of risk for the development of ventricular premature depolarization-induced cardiomyopathy. Hear. Rhythm 11(2):299–306. https://doi.org/10.1016/j.hrthm.2013.10.055

    Article  Google Scholar 

  79. Zhong L et al (2014) Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions: A single-center retrospective study. Hear Rhythm 11(2):187–193. https://doi.org/10.1016/j.hrthm.2013.10.033

    Article  Google Scholar 

  80. Badertscher P et al (2021) Impact of age on catheter ablation of premature ventricular contractions. J Cardiovasc Electrophysiol 32(4):1077–1084. https://doi.org/10.1111/jce.14976

    Article  PubMed  Google Scholar 

  81. Wang J et al (2018) The safety of catheter ablation for premature ventricular contractions in patients without structural heart disease. BMC Cardiovasc Disord 18(1):177. https://doi.org/10.1186/s12872-018-0913-2

    Article  PubMed  PubMed Central  Google Scholar 

  82. Enriquez A et al (2017) Inferior lead discordance in ventricular arrhythmias: A specific marker for certain arrhythmia locations. J Cardiovasc Electrophysiol 28(10):1179–1186. https://doi.org/10.1111/jce.13287

    Article  PubMed  Google Scholar 

  83. Lakkireddy D et al (2021) SafeTy and efficacy of direct oral anticoagulant versus aspirin for reduction of risk of CErebrovascular events in patients undergoing ventricular tachycardia ablation (STROKE-VT). JACC Clin Electrophysiol. https://doi.org/10.1016/j.jacep.2021.07.010

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No further acknowledgements to be declared.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Berruezo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Publication rights for the figures included have been obtained.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cojocaru, C., Penela, D., Berruezo, A. et al. Mechanisms, time course and predictability of premature ventricular contractions cardiomyopathy—an update on its development and resolution. Heart Fail Rev 27, 1639–1651 (2022). https://doi.org/10.1007/s10741-021-10167-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10167-w

Keywords

Navigation