Skip to main content
Log in

Contemporary device management of cardiogenic shock following acute myocardial infarction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Despite advances in the overall management of acute myocardial infarction (AMI), cardiogenic shock in the setting of AMI (CS-AMI) continues to be associated with poor patient outcomes. There are multiple devices that can be used in CS-AMI to support the failing circulation, although their utility in improving outcomes as compared with conventional pharmacotherapy of vasopressors and inotropes remains to be established. This contemporary review provides an update on the evidence base for each of these techniques. In CS-AMI, acute thrombotic occlusion of a major epicardial artery leads to hypoxia and myocardial ischaemia in the territory subtended by that vessel. The resultant regional dysfunction in myocardial contractility can severely compromise stroke volume and result in acute circulatory failure, systemic hypoperfusion, lactic acidosis, multi-organ failure and ultimately death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tarvasmaki T et al (2014) Acute heart failure with and without concomitant acute coronary syndromes: patient characteristics, management, and survival. J Card Fail 20(10):723–730

    Article  PubMed  Google Scholar 

  2. Eltchaninoff H et al (1995) Early and 1-year survival rates in acute myocardial infarction complicated by cardiogenic shock: a retrospective study comparing coronary angioplasty with medical treatment. Am Heart J 130(3 Pt 1):459–64

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg RJ et al (1999) Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med 340(15):1162–8

    Article  CAS  PubMed  Google Scholar 

  4. Kunadian V et al (2014) Outcomes in patients with cardiogenic shock following percutaneous coronary intervention in the contemporary era: an analysis from the BCIS database (British Cardiovascular Intervention Society). JACC Cardiovasc Interv 7(12):1374–85

    Article  PubMed  Google Scholar 

  5. Kunadian V et al (2013) Gender comparisons in cardiogenic shock during ST elevation myocardial infarction treated by primary percutaneous coronary intervention. Am J Cardiol 112(5):636–41

    Article  PubMed  Google Scholar 

  6. Kunadian V et al (2017) Gender differences in outcomes and predictors of all-cause mortality after percutaneous coronary intervention (data from United Kingdom and Sweden). Am J Cardiol 119(2):210–216

    Article  PubMed  Google Scholar 

  7. Fengler K et al (2015) Gender differences in patients with cardiogenic shock complicating myocardial infarction: a substudy of the IABP-SHOCK II-trial. Clin Res Cardiol 104(1):71–8

    Article  PubMed  Google Scholar 

  8. Unverzagt S et al (2014) Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev (1): p. CD009669

  9. Kantrowitz A et al (1968) Initial clinical experience with intra-aortic balloon pumping in cardiogenic shock. JAMA 203(2):113–8

    Article  CAS  PubMed  Google Scholar 

  10. Vijayalakshmi K et al (2007) Intra-aortic counterpulsation does not improve coronary flow early after PCI in a high-risk group of patients: observations from a randomized trial to explore its mode of action. J Invasive Cardiol 19(8):339–46

    PubMed  Google Scholar 

  11. Ohman EM et al (2005) Thrombolysis and counterpulsation to improve survival in myocardial infarction complicated by hypotension and suspected cardiogenic shock or heart failure: results of the TACTICS Trial. J Thromb Thrombolysis 19(1):33–9

    Article  PubMed  Google Scholar 

  12. Kolte D et al (2014) Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. J Am Heart Assoc 3(1):e000590

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sjauw KD et al (2009) A systematic review and meta-analysis of intra-aortic balloon pump therapy in ST-elevation myocardial infarction: should we change the guidelines? Eur Heart J 30(4):459–68

    Article  PubMed  Google Scholar 

  14. Thiele H et al (2012) Intra-aortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367(14):1287–96

    Article  CAS  PubMed  Google Scholar 

  15. Le Bras A (2019) No long-term benefit of IABP in cardiogenic shock. Nat Rev Cardiol 16(1):3

    PubMed  Google Scholar 

  16. Unverzagt S et al (2015) Intra-aortic balloon pump counterpulsation (IABP) for myocardial infarction complicated by cardiogenic shock. Cochrane Database Syst Rev (3): p. CD007398

  17. Iqbal MB et al (2016) Intra-aortic balloon pump counterpulsation during primary percutaneous coronary intervention for ST-elevation myocardial infarction and cardiogenic shock: insights from the British Columbia Cardiac Registry. PLoS One 11(2):e0148931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Timoteo AT et al (2016) Role of intra-aortic balloon pump counterpulsation in the treatment of acute myocardial infarction complicated by cardiogenic shock: evidence from the Portuguese nationwide registry. Eur Heart J Acute Cardiovasc Care 5(7):23–31

    Article  PubMed  Google Scholar 

  19. Altayyar S et al (2015) Intra-aortic balloon pump in patients with cardiogenic shock complicating myocardial infarction: a systematic review and meta-analysis of randomized trials. Pol Arch Med Wewn 125(3):181–90

    PubMed  Google Scholar 

  20. Rathod KS et al (2018) Contemporary trends in cardiogenic shock: incidence, intra-aortic balloon pump utilisation and outcomes from the London Heart Attack Group. Eur Heart J Acute Cardiovasc Care 7(1):16–27

    Article  PubMed  Google Scholar 

  21. de la Espriella-Juan R et al (2017) Impact of intra-aortic balloon pump on short-term clinical outcomes in ST-elevation myocardial infarction complicated by cardiogenic shock: a “real life” single center experience. Med Intensiva 41(2):86–93

    Article  PubMed  Google Scholar 

  22. Bhimaraj A et al (2020) Percutaneous left axillary artery placement of intra-aortic balloon pump in advanced heart failure patients. JACC Heart Fail 8(4):313–323

    Article  PubMed  Google Scholar 

  23. Helleu B et al (2018) Current indications for the intra-aortic balloon pump: the CP-GARO registry. Arch Cardiovasc Dis 111(12):739–748

    Article  PubMed  Google Scholar 

  24. Hill JD et al (1972) Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med 286(12): p. 629-34

  25. Guglin M et al (2019) Venoarterial ECMO for adults: JACC Scientific Expert Panel. J Am Coll Cardiol 73(6):698–716

    Article  PubMed  Google Scholar 

  26. Negi SI et al (2016) Contemporary use of veno-arterial extracorporeal membrane oxygenation for refractory cardiogenic shock in acute coronary syndrome. J Invasive Cardiol 28(2):52–7

    PubMed  Google Scholar 

  27. Overtchouk P et al (2018) Outcome after revascularisation of acute myocardial infarction with cardiogenic shock on extracorporeal life support. EuroIntervention 13(18):e2160–e2168

    Article  PubMed  Google Scholar 

  28. Pavasini R et al (2017) Extracorporeal circulatory support in acute coronary syndromes: a systematic review and meta-analysis. Crit Care Med 45(11):e1173–e1183

    Article  PubMed  Google Scholar 

  29. Muller G et al (2016) The ENCOURAGE mortality risk score and analysis of long-term outcomes after VA-ECMO for acute myocardial infarction with cardiogenic shock. Intensive Care Med 42(3):370–378

    Article  PubMed  Google Scholar 

  30. Diez-Villanueva P et al (2014) Early treatment of refractory cardiogenic shock with percutaneous veno-arterial ECMO implanted in the cardiac catheterization laboratory. Rev Esp Cardiol (Engl Ed) 67(12):1059–61

    Article  Google Scholar 

  31. Tang GH et al (2013) Peripheral venoarterial extracorporeal membrane oxygenation improves survival in myocardial infarction with cardiogenic shock. J Thorac Cardiovasc Surg 145(3):e32-3

    Article  PubMed  Google Scholar 

  32. Brunner S et al (2019) Extracorporeal life support in cardiogenic shock complicating acute myocardial infarction. J Am Coll Cardiol 73(18):2355–2357

    Article  PubMed  Google Scholar 

  33. den Uil CA et al (2017) Isolated left ventricular failure is a predictor of poor outcome in patients receiving veno-arterial extracorporeal membrane oxygenation. Eur J Heart Fail 19(Suppl 2):104–109

    Google Scholar 

  34. Petroni T et al (2014) Intra-aortic balloon pump effects on macrocirculation and microcirculation in cardiogenic shock patients supported by venoarterial extracorporeal membrane oxygenation*. Crit Care Med 42(9):2075–82

    Article  CAS  PubMed  Google Scholar 

  35. Meani P et al (2017) Modalities and effects of left ventricle unloading on extracorporeal life support: a review of the current literature. Eur J Heart Fail 19(Suppl 2):84–91

    Article  PubMed  Google Scholar 

  36. Singh A, SA, Singh K, Jalili S, Bae S, Patel AK, Patel KK, Khawaja T, Meraj PM (2019) Impact of left ventricular decompression with impella during venoarterial extracorporeal membrane oxygenation support in acute myocardial infarction complicated by cardiogenic shock in 41st Annual Scientific Sessions of the Society of Cardiovascular Angiography and Interventions. Holstra Northwell School of Medicine, North Shore University Hospital, United States p. S2

  37. Al-Fares AA et al (2019) Optimal strategy and timing of left ventricular venting during veno-arterial extracorporeal life support for adults in cardiogenic shock: a systematic review and meta-analysis. Circ Heart Fail 12(11):e006486

    Article  PubMed  Google Scholar 

  38. Russo JJ et al (2019) Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol 73(6):654–662

    Article  PubMed  Google Scholar 

  39. Gershlick AH Testing the Value of Novel Strategy and Its Cost Efficacy in Order to Improve the Poor Outcomes in Cardiogenic Shock (EUROSHOCK). 2019-2024

  40. Thiele H Extracorporeal Life Support in Cardiogenic Shock (ECLS-SHOCK). 2018-2023

  41. Meyns B et al (2003) Initial experiences with the Impella device in patients with cardiogenic shock - Impella support for cardiogenic shock. Thorac Cardiovasc Surg 51(6):312–7

    Article  CAS  PubMed  Google Scholar 

  42. Remmelink M et al (2007) Effects of left ventricular unloading by Impella recover LP2.5 on coronary hemodynamics. Catheter Cardiovasc Interv 70(4): p. 532-7

  43. Seyfarth M et al (2008) A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol 52(19):1584–8

    Article  PubMed  Google Scholar 

  44. Lauten A et al (2013) Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: results of the Impella-EUROSHOCK-registry. Circ Heart Fail 6(1): p. 23-30

  45. Jensen PB et al (2018) Single-centre experience with the Impella CP, 5.0 and RP in 109 consecutive patients with profound cardiogenic shock. Eur Heart J Acute Cardiovasc Care 7(1): p. 53-61

  46. Casassus F et al (2015) The use of Impella 2.5 in severe refractory cardiogenic shock complicating an acute myocardial infarction. J Interv Cardiol 28(1): p. 41-50

  47. Ouweneel DM et al (2016) Experience from a randomized controlled trial with Impella 2.5 versus IABP in STEMI patients with cardiogenic pre-shock. Lessons learned from the IMPRESS in STEMI trial. Int J Cardiol 202: p. 894-6

  48. Schrage B et al (2019) Impella support for acute myocardial infarction complicated by cardiogenic shock. Circulation 139(10):1249–1258

    Article  PubMed  Google Scholar 

  49. Basir MB et al (2017) Effect of early initiation of mechanical circulatory support on survival in cardiogenic shock. Am J Cardiol 119(6):845–851

    Article  PubMed  Google Scholar 

  50. O’Neill WW et al (2018) Analysis of outcomes for 15,259 US patients with acute myocardial infarction cardiogenic shock (AMICS) supported with the Impella device. Am Heart J 202:33–38

    Article  PubMed  Google Scholar 

  51. Wilkins CE et al (2019) Outcomes of hemodynamic support with impella for acute myocardial infarction complicated by cardiogenic shock at a rural community hospital without on-site surgical back-up. J Invasive Cardiol 31(2):E23–E29

    PubMed  Google Scholar 

  52. J M Effects of Advanced Mechanical Circulatory Support in Patients With ST Segment Elevation Myocardial Infarction Complicated by Cardiogenic Shock. The Danish Cardiogenic Shock Trial. 2012-2023

  53. Anderson ML et al (2013) Differences in the profile, treatment, and prognosis of patients with cardiogenic shock by myocardial infarction classification: a report from NCDR. Circ Cardiovasc Qual Outcomes 6(6):708–15

    Article  PubMed  Google Scholar 

  54. Albulushi A et al (2018) Acute right ventricular myocardial infarction. Expert Rev Cardiovasc Ther 16(7):455–464

    Article  CAS  PubMed  Google Scholar 

  55. Anderson MB et al (2015) Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant 34(12):1549–60

    Article  PubMed  Google Scholar 

  56. Pfisterer M (2003) Right ventricular involvement in myocardial infarction and cardiogenic shock. Lancet 362(9381):392–4

    Article  PubMed  Google Scholar 

  57. Spiro J, Doshi SN (2014) Use of left ventricular support devices during acute coronary syndrome and percutaneous coronary intervention. Curr Cardiol Rep 16(12):544

    Article  PubMed  Google Scholar 

  58. Thiele H et al (2005) Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 26(13):1276–83

    Article  PubMed  Google Scholar 

  59. Burkhoff D et al (2006) A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 152(3): p. 469 e1-8

  60. Kar B et al (2011) The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol 57(6):688–96

    Article  PubMed  Google Scholar 

  61. Nascimbene A et al (2016) Percutaneous coronary intervention with the TandemHeart percutaneous left ventricular assist device support: six years of experience and outcomes. Catheter Cardiovasc Interv 87(6):1101–10

    Article  PubMed  Google Scholar 

  62. Thiele H et al (2017) Percutaneous short-term active mechanical support devices in cardiogenic shock: a systematic review and collaborative meta-analysis of randomized trials. Eur Heart J 38(47):3523–3531

    Article  PubMed  Google Scholar 

  63. Scholz KH et al (2018) Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: results from the German prospective, multicentre FITT-STEMI trial. Eur Heart J 39(13):1065–1074

    Article  PubMed  PubMed Central  Google Scholar 

  64. Depre C, Davies PJ, Taegtmeyer H (1999) Transcriptional adaptation of the heart to mechanical unloading. Am J Cardiol 83(12A):58H-63H

    Article  CAS  PubMed  Google Scholar 

  65. Kapur NK et al (2015) Mechanical pre-conditioning with acute circulatory support before reperfusion limits infarct size in acute myocardial infarction. JACC Heart Fail 3(11):873–82

    Article  PubMed  Google Scholar 

  66. Saku K et al (2018) Left ventricular mechanical unloading by total support of Impella in myocardial infarction reduces infarct size, preserves left ventricular function, and prevents subsequent heart failure in dogs. Circ Heart Fail 11(5):e004397

    Article  PubMed  Google Scholar 

  67. Uriel N et al (2018) Mechanical unloading in heart failure. J Am Coll Cardiol 72(5):569–580

    Article  PubMed  Google Scholar 

  68. Meraj PM et al (2017) Impella 2.5 initiated prior to unprotected left main PCI in acute myocardial infarction complicated by cardiogenic shock improves early survival. J Interv Cardiol 30(3): p. 256-263

  69. Lazkani M et al (2017) A retrospective analysis of Impella use in all-comers: 1-year outcomes. J Interv Cardiol 30(6):577–583

    Article  PubMed  Google Scholar 

  70. Zhou M et al (2017) Analysis on application timing of IABP in emergency PCI treatment of patients with combined acute myocardial infarction and cardiac shock. Eur Rev Med Pharmacol Sci 21(12):2934–2939

    CAS  PubMed  Google Scholar 

  71. Loehn T et al (2020) Long term survival after early unloading with Impella CP((R)) in acute myocardial infarction complicated by cardiogenic shock. Eur Heart J Acute Cardiovasc Care 9(2):149–157

    Article  PubMed  Google Scholar 

  72. Basir MB et al (2018) Feasibility of early mechanical circulatory support in acute myocardial infarction complicated by cardiogenic shock: the Detroit cardiogenic shock initiative. Catheter Cardiovasc Interv 91(3):454–461

    Article  PubMed  Google Scholar 

  73. Basir MB et al (2019) Improved outcomes associated with the use of shock protocols: updates from the National Cardiogenic Shock Initiative. Catheter Cardiovasc Interv 93(7):1173–1183

    PubMed  Google Scholar 

  74. O'Neill WBB National Cardiogenic Shock Initiative (NCSI). 2018-2022

  75. Killip T 3rd, Kimball JT (1967) Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patients. Am J Cardiol 20(4): p. 457-64

  76. Baran DA et al (2019) SCAI clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv 94(1):29–37

    PubMed  Google Scholar 

  77. Hanson ID et al (2020) SCAI shock classification in acute myocardial infarction: Insights from the National Cardiogenic Shock Initiative. Catheter Cardiovasc Interv

Download references

Author information

Authors and Affiliations

Authors

Contributions

VK initiated the project. TS performed the literature search, appraisal of data and drafted the manuscript. DT, VK and AS each critically revised the manuscript.

Corresponding authors

Correspondence to Tariq Suleiman or Vijay Kunadian.

Ethics declarations

Conflict of interest

The authors T.S and V.K declare that they have no conflict of interest. A.S: has received travel funding from Orion Pharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleiman, T., Scott, A., Tong, D. et al. Contemporary device management of cardiogenic shock following acute myocardial infarction. Heart Fail Rev 27, 915–925 (2022). https://doi.org/10.1007/s10741-021-10088-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10088-8

Keywords

Navigation