Skip to main content

Advertisement

Log in

Evidence of clinical efficacy of counterpulsation therapy methods

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Although heart transplantation remains the ultimate treatment for end-stage heart failure, its epidemiological impact is limited by donor organ availability. Surgical and device-based approaches have been introduced with the aim of increasing systemic perfusion and in some circumstances promoting left ventricular recovery by inducing reverse remodelling. Innovative counterpulsation devices based on the established principle of the intra-aortic balloon pump have been developed, and of these, the CardioVad and the C-Pulse System have been introduced in clinical practice with convincing evidence of haemodynamic efficacy. The evolution from pulsatile to continuous-flow left ventricular assist devices has been associated with improved survival rates during the first 2 years of support with the potential of matching heart transplantation outcomes. However, blood contact with the device remains a significant challenge despite the highly sophisticated technology currently available. Innovative extra-vascular counterpulsation devices have been shown to overcome the limitations of the intra-aortic balloon pump and rend the device suitable for prolonged support. Monitoring of the performance of these novel devices is essential, and carotid Doppler ultrasonography is of utility in assessing the haemodynamic performance of the devices in a clinical setting. Computational modelling has played a role in the simulation of these devices and should continue to assist with their optimisation and implementation in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacGowan GA, Parry G, Schueler S, Hasan A (2011) The decline in heart transplantation in the UK. BMJ 342:d2483

    Article  PubMed  Google Scholar 

  2. Jones RH, Velazquez EJ, Michler RE, Sopko G, Oh JK, O’Connor CM, Hill JA, Menicanti L, Sadowski Z, Desvigne-Nickens P, Rouleau J-L, Lee KL, the STICH Hypothesis 2 Investigators (2009) Coronary bypass surgery with or without surgical ventricular reconstruction. N Engl J Med 360:1705–1717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dor V, Civaia F, Alexandrescu C, Sabatier M, Montiglio F (2011) Favourable effects of left ventricular reconstruction in patients excluded from the surgical treatments for ischemic heart failure (STICH) trial. J Thorac Cardiovasc Surg 141:905–916

    Article  PubMed  Google Scholar 

  4. Blom AS, Mukherjee R, Pilla JJ, Lowry AS, Yarbrough WM, Mingoia JT, Hendrick JW, Stroud RE, McLean JE, Affuso J, Gorman RC, Gorman JH 3rd, Acker MA, Spinale FG (2005) Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation 112:1274–1283

    Article  PubMed  Google Scholar 

  5. Pilla JJ, Blom AS, Brockman DJ, Bowen F, Yuan Q, Giammarco J, Ferrari VA, Gorman JH 3rd, Gorman RC, Acker MA (2002) Ventricular constraint using the acorn cardiac support device reduces myocardial akinetic area in an ovine model of acute infarction. Circulation 106:1207–1211

    Google Scholar 

  6. Magovern JA (2005) Experimental and clinical studies with the paracor cardiac restraint device. Semin Thorac Cardiovasc Surg 17:364–368

    Article  PubMed  Google Scholar 

  7. Lazar RM, Shapiro PA, Jaski BE, Parides MK, Bourge RC, Watson JT, Damme L, Dembitsky W, Hosenpud JD, Gupta L, Tierney A, Kraus T, Naka Y (2004) Neurological events during long-term mechanical circulatory support for heart failure: the randomized evaluation of mechanical assistance for the treatment of congestive heart failure (REMATCH) experience. Circulation 109:2423–2427

    Article  PubMed  Google Scholar 

  8. Jan KM (1985) Distribution of myocardial stress and its influence on coronary blood flow. J Biomech 18:815–820

    Article  CAS  PubMed  Google Scholar 

  9. Grossman W (1980) Cardiac hypertrophy: useful adaptation or pathologic process? Am J Med 69:576–584

    Article  CAS  PubMed  Google Scholar 

  10. Huisman RM, Elzinga G, Westerhof N, Sipkeman P (1980) Measurement of left ventricular wall stress. Cardiovasc Res 14:142–153

    Article  CAS  PubMed  Google Scholar 

  11. Yin FC (1981) Ventricular wall stress. Circ Res 49:829–842

    Article  CAS  PubMed  Google Scholar 

  12. Ratcliffe MB, Guy TS (2007) The effect of preoperative diastolic dysfunction on outcome after surgical ventricular remodelling. J Thorac Cardiovasc Surg 134:280–283

    Article  PubMed  Google Scholar 

  13. Rose EA, Moskowitz AJ, Packer M, Sollano JA, Williams DL, Tierney AR, Heitjan DF, Meier P, Ascheim DD, Levitan RG, Weinberg AD, Stevenson LW, Shapiro PA, Lazar RM, Watson JT, Goldstein DJ, Gelijns AC, for the REMATCH Investigators (1999) The REMATCH trial: rationale, design, and end points. Ann Thorac Surg 67:723–730

    Article  CAS  PubMed  Google Scholar 

  14. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, for the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345(20):1435–1443

    Article  CAS  PubMed  Google Scholar 

  15. Park SJ, Tector A, Piccioni W, Raines E, Gelijns A, Moskowitz A, Rose E, Holman W, Furukawa S, Frazier OH, Dembitsky W (2005) Left ventricular assist devices as destination therapy: a new look at survival. J Thorac Cardiovasc Surg 129:9–17

    Article  PubMed  Google Scholar 

  16. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, Sun B, Tatooles AJ, Delgado RM III, Long JW, Wozniak TC, Ghumman W, Farrar DJ, Frazier OH, for the HeartMate II Investigators (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251

    Article  CAS  PubMed  Google Scholar 

  17. Boyle AJ, Ascheim DD, Russo MJ, Kormos RL, John R, Naka Y, Gelijns AC, Hong KN, Teuteberg JJ (2011) Clinical outcomes for continuous flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant 30(4):402–407

    Article  PubMed  Google Scholar 

  18. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson L, Miller M, Young JB (2012) Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J Thorac Cardiovasc Surg 144:584–603

    Article  PubMed Central  PubMed  Google Scholar 

  19. Capoccia M, Bowles CT, Sabashnikov A, De Robertis F, Amrani M, Banner NR, Simon A A UK single centre retrospective analysis of the relationship between haemodynamic changes and outcome in patients undergoing prolonged left ventricular assist device support Ann Thorac Cardiovasc Surg (in press)

  20. McCarthy PM, Wang N, Vargo R (1994) Preperitoneal insertion of the HeartMate 1000 IP implantable left ventricular assist device. Ann Thorac Surg 57:634–637

    Article  CAS  PubMed  Google Scholar 

  21. Frazier OH, Myers TJ, Westaby S, Gregoric ID (2003) Use of the Jarvik 2000 left ventricular assist system as a bridge to heart transplantation or as destination therapy for patients with chronic heart failure. Ann Surg 237:631–636

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Farrar DJ (2000) The thoratec ventricular assist device: a paracorporeal pump for treating acute and chronic heart failure. Semin Thorac Cardiovasc Surg 12:243–250

    Article  CAS  PubMed  Google Scholar 

  23. Sharples L, Buxton M, Caine N, Cafferty F, Demeris N, Dyer M, Freeman C (2005) Evaluation of VAD programme in the UK (EVAD). Final Report to NHS R&D HTA Programme

  24. Frazier OH, Myers TJ (1999) Left ventricular assist system as a bridge to myocardial recovery. Ann Thorac Surg 68(2):734–741

    Article  CAS  PubMed  Google Scholar 

  25. Dandel M, Weng Y, Siniawski H, Potapov E, Lehmkuhl HB, Hetzer R (2005) Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation 112(9 Suppl):I37–I45

    PubMed  Google Scholar 

  26. Yacoub MH, Birks EJ, Tansley PD, Henien MY, Bowles C (2001) Bridge to recovery: the harefield approach. J Congest Heart Fail Circ Support 2(1):27–30

    Article  Google Scholar 

  27. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, Khaghani A, Yacoub MH (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355(18):1873–1884

    Article  CAS  PubMed  Google Scholar 

  28. Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, Webb C, Bougard R, Amrani M, Yacoub MH, Dreyfus G, Khaghani A (2011) Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation 123(4):381–390

    Article  CAS  PubMed  Google Scholar 

  29. Aaronson KD, Pagani FD, Maybaum SW, Feldman DS, Bogaev RC, O’Connell JB, Boyce SW, McGee EW, Sun BC, Goldstein DJ, Frazier OH, Myles JD, Weatherwax KJ, Basobas L, McGowan L, Farrar DJ, Yacoub MH, Birks EJ, Miller LW (2011) Combination therapy with pulsatile left ventricular assist device, heart failure medication and clenbuterol in chronic heart failure: results from harps. J Heart Lung Transplant 30(4):S8–S9

    Article  Google Scholar 

  30. Cardiac MaybaumS, Support RecoveryDuringContinuous-FlowLeftVentricularAssistDevice (2011) Some good news from across the Atlantic. Circulation 123:355–357

    Article  Google Scholar 

  31. Drakos SG, Kfoury AG, Stehlik J, Selzman CH, Reid BB, Terrovitis JV, Nanas JN, Li DY (2012) Bridge to recovery. Understanding the disconnect between clinical and biological outcomes. Circulation 126:230–241

    Article  PubMed Central  PubMed  Google Scholar 

  32. Moulopoulos S, Topaz S, Kolff W (1962) Diastolic balloon pumping (with carbon dioxide) in the aorta. A mechanical assistance for the failing circulation. Am Heart J 63:699

    Article  Google Scholar 

  33. Kantrowitz A, Cardona RR, Freed PS (1993) Weaning from the intra-aortic balloon pump. In: Qaal SJ (ed) Comprehensive intra-aortic balloon counterpulsation, 2nd edn. Mosby, Saint Louis, pp 398–407

    Google Scholar 

  34. Kern MJ (1991) Intra-aortic balloon counterpulsation. Coron Artery Disease 2:649–660

    Google Scholar 

  35. Scanlon PJ, O’Connell J, Johnson SA, Moran JM, Gunnar R, Pifarre R (1976) Balloon counterpulsation following surgery for ischemic heart disease. Circulation 54:90–93

    Google Scholar 

  36. Weber KT, Janicki JS (1974) Intra-aortic balloon counterpulsation: a review of physiological principles, clinical results, and device safety. Ann Thorac Surg 17:602–636

    Article  CAS  PubMed  Google Scholar 

  37. Bolooki H (1998) Clinical application of the intra-aortic balloon pump, 3rd edn. Futura, New York, pp 1–20

    Google Scholar 

  38. Khir AW, Price S, Hale C, Young DA, Parker KH, Pepper JR (2005) Intra-aortic balloon pumping: does posture matter? Artif Organs 29(1):36–40

    Article  PubMed  Google Scholar 

  39. Biglino G, Whitehorne M, Pepper JR, Khir AW (2008) Pressure and flow volume distribution associated with intra-aortic balloon inflation: an in vitro study. Artif Organs 32(1):19–27

    PubMed  Google Scholar 

  40. Biglino G, Kolyva C, Whitehorne M, Pepper JR, Khir AW (2010) Variations in aortic pressure affect the mechanics of the intra-aortic balloon: an in vitro investigation. Artif Organs 34(7):546–553

    Article  PubMed  Google Scholar 

  41. Scheidt S, Wilner G, Mueller H, Summers D, Lesch M, Wolff G, Krakauer J, Rubenfire M, Fleming P, Noon G, Oldham N, Killip T, Kantrowitz A (1973) Intra-aortic balloon counterpulsation in cardiogenic shock. N Engl J Med 288:979–984

    Article  CAS  PubMed  Google Scholar 

  42. Dunkman WB, Leinbach RC, Buckley MJ, Mundth ED, Kantrowitz AR, Austen WG, Sanders CA (1972) Clinical and haemodynamic results of intra-aortic balloon pumping and surgery for cardiogenic shock. Circulation 47:465–477

    Article  Google Scholar 

  43. Stefanadis C, Dernellis J, Tsiamis E, Stratos C, Kallikazaros I, Toutouzas P (1998) Aortyic function in patients during intra-aortic balloon pumping determined by the pressure-diameter relation. J Thorac Cardiovasc Surg 116:1052–1059

    Article  CAS  PubMed  Google Scholar 

  44. Khir AW, Price S, Henein MY, Parker KH, Pepper JR (2003) Intra-aortic balloon pumping: effects on left ventricular diastolic function. Eur J Cardiothorac Surg 24:277–282

    Article  PubMed  Google Scholar 

  45. Freedman RJ (1991) The intra-aortic balloon pump system: current roles and future directions. J Appl Cardiol 6:313

    Google Scholar 

  46. Hilberman M (1981) Effect of the intra-aortic balloon pump on post-operative renal function in man. Crit Care Med 9:85

    Article  CAS  PubMed  Google Scholar 

  47. Urschel CW, Eber L, Forrester J, Matloff J, Carpenter R, Sonnenblick E (1970) Alteration of mechanical performance of the ventricle by intra-aortic balloon counterpulsation. Am J Cardiol 25:546–551

    Article  CAS  PubMed  Google Scholar 

  48. Port SC, Patel S, Schmidt DH (1984) Effects of intra-aortic balloon counterpulsation on myocardial blood flow in patients with severe coronary artery disease. J Am Coll Cardiol 3:367–374

    Article  Google Scholar 

  49. Leinbach RC, Buckley MJ, Austen WG, Petschek HE, Kantrowitz AR, Sanders CA (1971) Effects of intra-aortic balloon pumping on coronary flow and metabolism in man. Circulation 43:I-77–I-81

    Article  CAS  Google Scholar 

  50. Williams DO, Korr KS, Gewirtz H, Most AS (1982) The effect of intra-aortic balloon counterpulsation on regional myocardial blood flow and oxygen consumption in the presence of coronary artery stenosis in patients with unstable angina. Circulation 66:593–597

    Article  CAS  PubMed  Google Scholar 

  51. Bregman D, Parodi EN, Reemtsma K, Malm JR (1975) Advances in clinical intra-aortic balloon pumping. In: Norman IC, Lawrence EP, Cooper T (eds) Coronary artery medicine and surgery: concepts and controversies. Appleton-Century-Crofts, New York, p 413

    Google Scholar 

  52. Whittle JL, Feldman RL, Pepine CJ, Nichols WW, Selby J, Kelly T, Conti TR (1980) Effects of intra-aortic balloon pumping on regional and total coronary flow in patients with coronary disease. Am J Cardiol 45:395–401

    Article  Google Scholar 

  53. Kolyva C, Pantalos GM, Pepper JR, Khir AW (2010) How much of the intra-aortic balloon volume is displaced toward the coronary circulation? J Thorac Cardiovasc Surg 140:110–116

    Article  PubMed Central  PubMed  Google Scholar 

  54. Kolyva C, Pantalos GM, Giridharan GA, Pepper JR, Khir AW (2009) Discerning aortic waves during intra-aortic balloon pumping and their relation to benefits of counterpulsation in humans. J Appl Physiol 107:1497–1503

    Article  PubMed Central  PubMed  Google Scholar 

  55. Lu PJ, Yang CFJ, Wu MY, Hung CH, Chan MY, Hsu TC (2011) Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis. J Thorac Cardiovasc Surg 142:1205–1213

    Article  PubMed  Google Scholar 

  56. Parker KH, Jones CJH (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomed Eng 112:322–326

    CAS  Google Scholar 

  57. Bleasdale RA, Parker KH, Jones CJH (2003) Chasing the wave. Unfashionable but important new concepts in arterial wave travel. Am J Physiol Heart Circ Physiol 284:H1879–H1885

    Article  CAS  PubMed  Google Scholar 

  58. Flewitt JA, Hobson TN, Wang J Jr, Johnston CR, Shrive NG, Belenkie I, Parker KH, Tyberg JV (2007) Wave intensity analysis of left ventricular filling: application of windkessel theory. Am J Physiol Heart Circ Physiol 292(6):H2817–H2823

    Article  CAS  PubMed  Google Scholar 

  59. Feng J, Khir AW (2010) Determination of wave speed and wave separation in the arteries using diameter and velocity. J Biomech 43:455–462

    Article  CAS  PubMed  Google Scholar 

  60. Siniawski H, Lehmkuhl H, Dandel M, Unbehaun A, Kemper D, Weng Y, Hetzer R (2012) Prediction of true decompensation in chronic heart failure for optimal timing of mechanical circulatory support: non-invasive arterial-ventricular coupling. J Funct Biomater 3:100–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Freed PS, Wasfie T, Zado B, Kantrowitz A (1988) Intra-aortic balloon pumping for prolonged circulatory support. Am J Cardiol 61(8):554–557

    Article  CAS  PubMed  Google Scholar 

  62. Manord JD, Garrard CL, Mehra MR, Sternbergh WC 3rd, Ballinger B, Ventura HO, Stapleton DD, Smart FW, Bowen JC, Money SR (1997) Implications for the vascular surgeon with prolonged (3–89 days) intra-aortic balloon pump counterpulsation. J Vasc Surg 26(3):511–516

    Article  CAS  PubMed  Google Scholar 

  63. McBride LR, Miller LW, Nauheim KS, Pennington DG (1989) Axillary artery insertion of an intra-aortic balloon pump. Ann Thorac Surg 48:874–875

    Article  CAS  PubMed  Google Scholar 

  64. Umakanthan R, Hoff SJ, Solenkova N, Wigger MA, Keebler ME, Lenneman A, Leacche M, DiSalvo TG, Ooi H, Naftilan AJ, Byrne JG, Ahmad RM (2012) Benefits of ambulatory axillary intra-aortic balloon pump for circulatory support as bridge to heart transplant. J Thorac Cardiovasc Surg 143:1193–1197

    Article  PubMed  Google Scholar 

  65. Jeevanandam V, Jayakar DV, Anderson AS, Martin S, Mueller S, Piccione W, Stephenson LW, Hsu J, Freed PS, Kantrowitz A (2001) A permanent implantable IABP to treat heart failure: initial human experience. J Heart Lung Transl 21(1):A105

    Article  Google Scholar 

  66. Jeevanandam V, Jayakar D, Anderson AS, Martin S, Piccione W Jr, Heroux AL, Wynne J, Stephenson LW, Hsu J, Freed PS, Kantrowitz A (2002) circulatory assistance with a permanent implantable IABP: initial human experience. Circulation 106:I-183–I-188

    Article  Google Scholar 

  67. Jeevanandam V, Chen M, Myren M, Anderson A, Kantrowitz A, Raman J (2007) Permanent circulatory assist device Implantation using counterpulsation. International society of heart and lung tansplantation (poster presentation). 27th Annual meeting, San Francisco, 25–28 April 2007

  68. Legget ME, Peters WS, Milsom FP, Clark JS, West TM, French RL, Merry AF (2005) Extra-aortic balloon counterpulsation an intraoperative feasibility study. Circulation 112:I-26–I-31

    Google Scholar 

  69. Hayward CS, Peters WS, Merry AF, Ruygrok PN, Jansz P, O’Driscoll G, Larbalestier RI, Smith JA, Ho B, Legget ME, Milsom FP (2010) Chronic extra-aortic balloon counterpulsation: first-in-human pilot study in end-stage heart failure. J Heart Lung Transplant 29:1427–1432

    Article  PubMed  Google Scholar 

  70. Shea ML, Conti CR, Arora RR (2005) An update on enhanced external counterpulsation. Clin Cardiol 28:115–118

    Article  PubMed  Google Scholar 

  71. Arora RR, Chou TM, Jain D, Fleishman B, Crawford L, McKieran T, Nesto RW (1999) The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP onexercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol 33:1833–1840

    Article  CAS  PubMed  Google Scholar 

  72. Novo G, Bagger JP, Carta A, Koutroulis G, Hall R, Nihoyannopoulos P (2006) Enhanced external counterpulsation for treatment of refractory angina pectoris. J Cardiovasc Med 7:335–339

    Article  Google Scholar 

  73. Pettersson T, Bondesson S, Cojocaru D, Ohlsson O, Wackenfors A, Edvinsson L (2006) One year follow-up of patients with refractory angina pectoris treated with enhanced external counterpulsation. BMC Cardiovasc Disord 6:28

    Article  PubMed Central  PubMed  Google Scholar 

  74. Feldman AM, Silver MA, Francis GS et al (2006) Enhanced external counterpulsation improves exercise tolerance in patients with chronic heart failure. J Am Coll Cardiol 48:1198–1205

    Article  PubMed  Google Scholar 

  75. Abbottsmith CW, Chung ES, de Varricchione T, Lame PA, Silver MA, Francis GS, Feldman AM (2006) Enhanced external counterpulsation improves exercise duration and peak oxygen consumption in older patients with heart failure: a subgroup analysis of the PEECH trial. Congest Heart Fail 12:307–311

    Article  PubMed  Google Scholar 

  76. Scholz D, Cai W, Schaper W (2001) Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis 4:247–257

    Article  CAS  PubMed  Google Scholar 

  77. Niebauer J, Cook JP (1996) Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 28:1652–1660

    Article  CAS  PubMed  Google Scholar 

  78. Soran O, Kennard ED, Bart BA, Kelsey SF (2007) Impact of external counterpulsation treatment on emergency department visits and hospitalizations in refractory angina patients with left ventricular dysfunction. Congest Heart Fail 13:36–40

    Article  PubMed  Google Scholar 

  79. Soran O, Kennard ED, Kfoury AG, Kelsey SF, Investigators IEPR (2006) Two-year clinical outcomes after enhanced external counterpulsation (EECP) therapy in patients with refractory angina pectoris and left ventricular dysfunction (report from The International EECP Patient Registry). Am J Cardiol 97(1):17–20

    Article  PubMed  Google Scholar 

  80. Silver MA (2006) Mechanisms and evidence for the role of enhanced counterpulsation in heart failure management. Curr Heart Fail Rep 3:25–32

    Article  PubMed  Google Scholar 

  81. Koenig SC, Spence PA, Pantalos GM, Dowling RD, Litwak KN (2006) Development and early testing of a simple subcutaneous counterpulsation device. ASAIO J 52(4):362–367

    Article  PubMed Central  PubMed  Google Scholar 

  82. Koenig SC, Litwak KN, Giridharan GA, Pantalos GM, Dowling RD, Prabhu SD, Slaughter MS, Sobieski MA, Spence PA (2008) Acute hemodynamic efficacy of a 32-ml subcutaneous counterpulsation device in a calf model of diminished cardiac function. ASAIO J 54(6):578–584

    Article  PubMed Central  PubMed  Google Scholar 

  83. Bartoli CR, Wilson GC, Giridharan GA, Slaughter MS, Sherwood LC, Spence PA, Prabhu SD, Koenig SC (2010) A novel subcutaneous counterpulsation device: acute hemodynamic efficacy during pharmacologically induced hypertension, hypotension, and heart failure. Artif Organs 34(7):537–545

    Article  PubMed  Google Scholar 

  84. Giridharan GA, Lederer C, Berthe A, Goubergritis L, Hutzenlaub J, Slaughter MS, Dowling RD, Spence PA, Koenig SC (2011) Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modelling. Med Eng Phys 33(10):1193–1202

    Article  CAS  PubMed  Google Scholar 

  85. Giridharan GA, Bartoli CR, Spence PA, Dowling RD, Koenig SC (2012) Counterpulsation with symphony prevents retrograde carotid, aortic, and coronary flows observed with intra-aortic balloon pump support. Artif Organs 36(7):600–606

    Article  PubMed  Google Scholar 

  86. Nanas JN, Lolas CT, Charitos CE, Nanas SN, Margari ZJ, Agapitos EV, Moulopoulos SD (1996) A valveless high stroke volume counterpulsation device restores hemodynamics in patients with congestive heart failure and intractable cardiogenic shock awaiting heart transplantation. J Thorac Cardiovasc Surg 111:55–61

    Article  CAS  PubMed  Google Scholar 

  87. Lu P-J, Yang C-FJ, Wu M-Y, Hung C-H, Chan M-Y, Hsu T-C (2012) Wave intensity analysis of para-aortic counterpulsation. Am J Physiol Heart Circ Physiol 302:H1481–H1491

    Article  CAS  PubMed  Google Scholar 

  88. Verkerke B, de Muinck ED, Rakhorst G, Blanksma PK (1993) The PUCA-pump, a left ventricular assist device. Artif Organs 17(5):365–368

    Article  CAS  PubMed  Google Scholar 

  89. Morsink P, Verkerke GJ, Grootenboer HJ, Mihaylov D, Rakhorst G (1997) Numerical modelling of the blood flow behaviour in the valved catheter of the PUCA pump. Int J Artif Organs 20(5):277–284

    CAS  PubMed  Google Scholar 

  90. Verkerke GJ, Mihaylov D, Geertsema AAJ, Rakhorst G (1999) Numerical simulation of the pulsating catheter pump: a left ventricular assist device. Artif Organs 23(10):924–931

    Article  CAS  PubMed  Google Scholar 

  91. Verkerke GJ, Geertsema AA, Mihaylov D, Blanksma PK, Rakhorst G (2000) Numerical simulation of a left ventricular assist device on the cardiovascular system. Int J Artif Organs 23(11):765–773

    CAS  PubMed  Google Scholar 

  92. Rakhorst G, van der Meer J, Kik Ch, Mihaylov D, Havlik P, Trinkl J, Monties JR (1996) Biological evaluation of mechanical circulatory support systems in calves. Int J Artif Organs 19(8):472–476

    CAS  PubMed  Google Scholar 

  93. Mihaylov D, Verkerke GJ, Blanksma PK, Elstrodt J, de Jong ED, Rakhorst G (1999) Evaluation of the optimal driving mode during left ventricular assist with a pulsatile catheter pump in calves. Artif Organs 23(12):1117–1122

    Article  CAS  PubMed  Google Scholar 

  94. Mihaylov D, Rakhorst G, van der Plaats A, van Loon JP, Hummel MM, Elstrodt J, Verkerke GJ (2000) In vivo and in vitro experience with the PUCA-II, a single valved pulsatile catheter pump. Int J Artif Organs 23(10):697–702

    CAS  PubMed  Google Scholar 

  95. Mariani MA, Diephuis JC, Kuipers MJH, Gianoli M, Grandjean JG (2007) Off-pump coronary artery bypass graft surgery with a pulsatile catheter pump for left ventricular dysfunction. Ann Thorac Surg 84:690–692

    Article  PubMed  Google Scholar 

  96. Amico A, Brigiani MS, Vallabini A, Ferrante B, Marzovillo A, Loizzi D, Carbone C (2008) PulseCath, a new short-term ventricular assist device: our experience in off-pump coronary artery bypass graft surgery. J Cardiovasc Med 9:423–426

    Article  Google Scholar 

  97. Arrigoni SC, Kuijpers M, Mecozzi G, Mariani MA (2011) PulseCath® as a right ventricular assist device. Interact CardioVasc Thorac Surg 12:891–894

    Article  PubMed  Google Scholar 

  98. Bowles CT, Shah SS, Nishimura K, Clark C, Cumming DVE, Pattison CW, Pepper JR, Jacob MH (1991) Development of mock circulation models for the assessment of counterpulsation systems. Cardiovasc Res 25:901–908

    Article  CAS  PubMed  Google Scholar 

  99. Hartnett TM, Gaffney T (1993) Intra-aortic balloon size selection. In: Qaal SJ (ed) Comprehensive intra aortic balloon counterpulsation, 2nd edn. Mosby, Saint Louis, pp 207–214

    Google Scholar 

  100. Busse R, Bauer RD, Schabert A, Summa Y, Wetterer E (1979) An improved method for the determination of the pulse transmission characteristics of arteries in vivo. Circ Res 44(5):630–636

    Article  CAS  PubMed  Google Scholar 

  101. Bleasdale RA, Parker KH, Jones CJH (2003) Chasing the wave. unfashionable but important new concepts in arterial wave travel. Am J Physiol Heart Circ Physiol 284(6):H1879–H1885

    Article  CAS  PubMed  Google Scholar 

  102. Jones CJH, Parker KH, Hughes R, Sheridan DJ (1992) Nonlinearity of human arterial pulse wave transmission. J Biomech Eng 114(1):10–14

    Article  CAS  PubMed  Google Scholar 

  103. Hollander EH, Wang JJ, Dobson GM, Parker KH, Tyberg JV (2001) Negative wave reflections in pulmonary arteries. Am J Physiol Heart Circ Physiol 281(2):H895–H902

    CAS  PubMed  Google Scholar 

  104. Sun YH, Anderson TJ, Parker KH, Tyberg JV (2000) Wave-intensity analysis: a new approach to coronary hemodynamics. J Appl Physiol 89(4):1636–1644

    CAS  PubMed  Google Scholar 

  105. Khir AW, O’Brien A, Gibbs JS, Parker KH (2001) Determination of wave speed and wave separation in the arteries. J Biomech 34(9):1145–1155

    Article  CAS  PubMed  Google Scholar 

  106. Koh TW, Pepper JR, DeSouza AC, Parker KH (1998) Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves. Heart Vessels 13(3):103–113

    Article  CAS  PubMed  Google Scholar 

  107. Niki K, Sugawara M, Chang D, Harada A, Okada T, Sakai R, Uchida K, Tanaka R, Mumford CE (2002) A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 17:12–21

    Article  PubMed  Google Scholar 

  108. Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, Hayano J, Kimura G (2003) Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 18:107–111

    Article  PubMed  Google Scholar 

  109. Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720

    Article  PubMed  Google Scholar 

  110. Friedrich EB, Böhm M (2000) Management of end-stage heart failure. Heart 93:626–631

    Article  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interests or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Capoccia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capoccia, M., Bowles, C.T., Pepper, J.R. et al. Evidence of clinical efficacy of counterpulsation therapy methods. Heart Fail Rev 20, 323–335 (2015). https://doi.org/10.1007/s10741-014-9468-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-014-9468-1

Keywords

Navigation