Skip to main content

Advertisement

Log in

Rodent models of heart failure: an updated review

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) is one of the major health and economic burdens worldwide, and its prevalence is continuously increasing. The study of HF requires reliable animal models to study the chronic changes and pharmacologic interventions in myocardial structure and function and to follow its progression toward HF. Indeed, during the past 40 years, basic and translational scientists have used small animal models to understand the pathophysiology of HF and find more efficient ways of preventing and managing patients suffering from congestive HF (CHF). Each species and each animal model has advantages and disadvantages, and the choice of one model over another should take them into account for a good experimental design. The aim of this review is to describe and highlight the advantages and drawbacks of some commonly used HF rodents models, including both non-genetically and genetically engineered models, with a specific subchapter concerning diastolic HF models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbate A, Scarpa S, Santini D, Palleiro J, Vasaturo F, Miller J, Morales C, Vetrovec GW, Baldi A (2006) Myocardial expression of survivin, an apoptosis inhibitor, in aging and heart failure. An experimental study in the spontaneously hypertensive rat. Int J Cardiol 111:371–376. doi:10.1016/j.ijcard.2005.07.061

    Article  PubMed  Google Scholar 

  2. Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ (1998) Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280:574–577

    Article  PubMed  CAS  Google Scholar 

  3. Akhter SA, Milano CA, Shotwell KF, Cho MC, Rockman HA, Lefkowitz RJ, Koch WJ (1997) Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J Biol Chem 272:21253–21259

    Article  PubMed  CAS  Google Scholar 

  4. An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291:H1489–1506. doi:10.1152/ajpheart.00278.2006

    Article  PubMed  CAS  Google Scholar 

  5. Anderson ME (2005) Calmodulin kinase signaling in heart: an intriguing candidate target for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther 106:39–55. doi:10.1016/j.pharmthera.2004.11.002

    Article  PubMed  CAS  Google Scholar 

  6. Antos CL, Frey N, Marx SO, Reiken S, Gaburjakova M, Richardson JA, Marks AR, Olson EN (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a. Circ Res 89:997–1004

    Article  PubMed  CAS  Google Scholar 

  7. Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403

    Article  PubMed  CAS  Google Scholar 

  8. Arnolda L, McGrath B, Cocks M, Sumithran E, Johnston C (1985) Adriamycin cardiomyopathy in the rabbit: an animal model of low output cardiac failure with activation of vasoconstrictor mechanisms. Cardiovasc Res 19:378–382

    Article  PubMed  CAS  Google Scholar 

  9. Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marban E, Periasamy M (1998) Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 83:1205–1214

    Article  PubMed  CAS  Google Scholar 

  10. Bayat H, Swaney JS, Ander AN, Dalton N, Kennedy BP, Hammond HK, Roth DM (2002) Progressive heart failure after myocardial infarction in mice. Basic Res Cardiol 97:206–213

    Article  PubMed  Google Scholar 

  11. Berg RG, Leenen FH, de Jong W (1979) Plasma renin activity and sodium, potassium and water excretion during reversal of hypertension in the one-clip two-kidney hypertensive rat. Clin Sci (Lond) 57:47–52

    CAS  Google Scholar 

  12. Bialik GM, Abassi ZA, Hammel I, Winaver J, Lewinson D (2001) Evaluation of atrial natriuretic peptide and brain natriuretic peptide in atrial granules of rats with experimental congestive heart failure. J Histochem Cytochem 49:1293–1300

    Article  PubMed  CAS  Google Scholar 

  13. Bing OH, Brooks WW, Robinson KG, Slawsky MT, Hayes JA, Litwin SE, Sen S, Conrad CH (1995) The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. J Mol Cell Cardiol 27:383–396

    Article  PubMed  CAS  Google Scholar 

  14. Bittner HB, Chen EP, Milano CA, Lefkowitz RJ, Van Trigt P (1997) Functional analysis of myocardial performance in murine hearts overexpressing the human beta 2-adrenergic receptor. J Mol Cell Cardiol 29:961–967. doi:10.1006/jmcc.1996.0339

    Article  PubMed  CAS  Google Scholar 

  15. Boluyt MO, O’Neill L, Meredith AL, Bing OH, Brooks WW, Conrad CH, Crow MT, Lakatta EG (1994) Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 75:23–32

    Article  PubMed  CAS  Google Scholar 

  16. Boluyt MO, Robinson KG, Meredith AL, Sen S, Lakatta EG, Crow MT, Brooks WW, Conrad CH, Bing OH (2005) Heart failure after long-term supravalvular aortic constriction in rats. Am J Hypertens 18:202–212. doi:10.1016/j.amjhyper.2004.08.034

    Article  PubMed  Google Scholar 

  17. Bond RA, Leff P, Johnson TD, Milano CA, Rockman HA, McMinn TR, Apparsundaram S, Hyek MF, Kenakin TP, Allen LF et al (1995) Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta 2-adrenoceptor. Nature 374:272–276. doi:10.1038/374272a0

    Article  PubMed  CAS  Google Scholar 

  18. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223. doi:10.1161/CIRCULATIONAHA.106.679597

    Article  PubMed  Google Scholar 

  19. Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466. doi:10.2337/db07-0481

    Article  PubMed  CAS  Google Scholar 

  20. Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo G (2003) Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9:68–75. doi:10.1038/nm805nm805

    Article  PubMed  CAS  Google Scholar 

  21. Bras-Silva C, Fontes-Sousa AP, Moura C, Areias JC, Leite-Moreira AF (2006) Impaired response to ET(B) receptor stimulation in heart failure: functional evidence of endocardial endothelial dysfunction? Exp Biol Med (Maywood) 231:893–898

    CAS  Google Scholar 

  22. Bras-Silva C, Leite-Moreira AF (2008) Myocardial effects of endothelin-1. Rev Port Cardiol 27:925–951

    PubMed  Google Scholar 

  23. Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM, Rosenberg RD, Schrenzel M, Krieger M (2002) Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res 90:270–276

    Article  PubMed  CAS  Google Scholar 

  24. Braunschweig F, Cowie MR, Auricchio A (2011) What are the costs of heart failure? Europace 13(Suppl 2):ii13–17. doi:10.1093/europace/eur081

  25. Brede M, Wiesmann F, Jahns R, Hadamek K, Arnolt C, Neubauer S, Lohse MJ, Hein L (2002) Feedback inhibition of catecholamine release by two different alpha2-adrenoceptor subtypes prevents progression of heart failure. Circulation 106:2491–2496

    Article  PubMed  CAS  Google Scholar 

  26. Brenner DA, Apstein CS, Saupe KW (2001) Exercise training attenuates age-associated diastolic dysfunction in rats. Circulation 104:221–226

    Article  PubMed  CAS  Google Scholar 

  27. Bristow MR, Thompson PD, Martin RP, Mason JW, Billingham ME, Harrison DC (1978) Early anthracycline cardiotoxicity. Am J Med 65:823–832

    Article  PubMed  CAS  Google Scholar 

  28. Brower GL, Levick SP, Janicki JS (2007) Inhibition of matrix metalloproteinase activity by ACE inhibitors prevents left ventricular remodeling in a rat model of heart failure. Am J Physiol Heart Circ Physiol 292:H3057–3064. doi:10.1152/ajpheart.00447.2006

    Article  PubMed  CAS  Google Scholar 

  29. Brown L, Ooi SY, Lau K, Sernia C (2000) Cardiac and vascular responses in deoxycorticosterone acetate-salt hypertensive rats. Clin Exp Pharmacol Physiol 27:263–269

    Article  PubMed  CAS  Google Scholar 

  30. Buermans HP, Redout EM, Schiel AE, Musters RJ, Zuidwijk M, Eijk PP, van Hardeveld C, Kasanmoentalib S, Visser FC, Ylstra B, Simonides WS (2005) Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics 21:314–323. doi:10.1152/physiolgenomics.00185.2004

    Article  PubMed  CAS  Google Scholar 

  31. Bugger H, Abel ED (2008) Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond) 114:195–210. doi:10.1042/CS20070166

    Article  CAS  Google Scholar 

  32. Burke SL, Evans RG, Head GA (2011) Effects of chronic sympatho-inhibition on renal excretory function in renovascular hypertension. J Hypertens 29:945–952. doi:10.1097/HJH.0b013e3283449529

    Article  PubMed  CAS  Google Scholar 

  33. Calderone A, de Champlain J, Rouleau JL (1991) Adriamycin-induced changes to the myocardial beta-adrenergic system in the rabbit. J Mol Cell Cardiol 23:333–342

    Article  PubMed  CAS  Google Scholar 

  34. Cantor EJ, Babick AP, Vasanji Z, Dhalla NS, Netticadan T (2005) A comparative serial echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload. J Mol Cell Cardiol 38:777–786. doi:10.1016/j.yjmcc.2005.02.012

    Article  PubMed  CAS  Google Scholar 

  35. Carvalho KA, Guarita-Souza LC, Hansen P, Rebelatto CL, Senegaglia AC, Miyague N, Olandoski M, Francisco JC, Furuta M, Gremski W (2006) Cell transplantation after the coculture of skeletal myoblasts and mesenchymal stem cells in the regeneration of the myocardium scar: an experimental study in rats. Transplant Proc 38:1596–1602. doi:10.1016/j.transproceed.2006.03.023

    Article  PubMed  CAS  Google Scholar 

  36. Cavallero S, Gonzalez GE, Puyo AM, Roson MI, Perez S, Morales C, Hertig CM, Gelpi RJ, Fernandez BE (2007) Atrial natriuretic peptide behaviour and myocyte hypertrophic profile in combined pressure and volume-induced cardiac hypertrophy. J Hypertens 25:1940–1950. doi:10.1097/HJH.0b013e3282435b1e00004872-200709000-00026

    Article  PubMed  CAS  Google Scholar 

  37. Chekanov VS (1999) A stable model of chronic bilateral ventricular insufficiency (dilated cardiomyopathy) induced by arteriovenous anastomosis and doxorubicin administration in sheep. J Thorac Cardiovasc Surg 117:198–199

    Article  PubMed  CAS  Google Scholar 

  38. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    Article  PubMed  CAS  Google Scholar 

  39. Chen J, Chien KR (1999) Complexity in simplicity: monogenic disorders and complex cardiomyopathies. J Clin Invest 103:1483–1485. doi:10.1172/JCI7297

    Article  PubMed  CAS  Google Scholar 

  40. Chen Y, Daosukho C, Opii WO, Turner DM, Pierce WM, Klein JB, Vore M, Butterfield DA, St Clair DK (2006) Redox proteomic identification of oxidized cardiac proteins in adriamycin-treated mice. Free Radic Biol Med 41:1470–1477. doi:10.1016/j.freeradbiomed.2006.08.006

    Article  PubMed  CAS  Google Scholar 

  41. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994–996

    Article  PubMed  CAS  Google Scholar 

  42. Cohn JN (2002) Sympathetic nervous system in heart failure. Circulation 106:2417–2418

    Article  PubMed  Google Scholar 

  43. Colbert MC, Hall DG, Kimball TR, Witt SA, Lorenz JN, Kirby ML, Hewett TE, Klevitsky R, Robbins J (1997) Cardiac compartment-specific overexpression of a modified retinoic acid receptor produces dilated cardiomyopathy and congestive heart failure in transgenic mice. J Clin Invest 100:1958–1968. doi:10.1172/JCI119727

    Article  PubMed  CAS  Google Scholar 

  44. Coral-Vazquez R, Cohn RD, Moore SA, Hill JA, Weiss RM, Davisson RL, Straub V, Barresi R, Bansal D, Hrstka RF, Williamson R, Campbell KP (1999) Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98:465–474

    Article  PubMed  CAS  Google Scholar 

  45. Creemers EE, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JP, Smits JF, Daemen MJ, Zile MR, Spinale FG (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364–371. doi:10.1152/ajpheart.00511.2002

    PubMed  CAS  Google Scholar 

  46. Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D, Benvenutti L, Higuchi ML, Koyama NS, Silva JS, Kalil J, Liew CC (2005) Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas’ disease cardiomyopathy. Am J Pathol 167:305–313. doi:10.1016/S0002-9440(10)62976-8

    Article  PubMed  CAS  Google Scholar 

  47. D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW 2nd (1997) Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 94:8121–8126

    Article  PubMed  Google Scholar 

  48. Dahl LK, Heine M, Tassinari L (1962) Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194:480–482

    Article  PubMed  CAS  Google Scholar 

  49. Dash R, Kadambi V, Schmidt AG, Tepe NM, Biniakiewicz D, Gerst MJ, Canning AM, Abraham WT, Hoit BD, Liggett SB, Lorenz JN, Dorn GW 2nd, Kranias EG (2001) Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation 103:889–896

    Article  PubMed  CAS  Google Scholar 

  50. De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L, Ferreira-Martins J, Zheng H, Hosoda T, Rota M, Urbanek K, Kajstura J, Leri A, Rossi F, Anversa P (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121:276–292. doi:10.1161/CIRCULATIONAHA.109.895771

    Article  PubMed  CAS  Google Scholar 

  51. Delgado RM 3rd, Nawar MA, Zewail AM, Kar B, Vaughn WK, Wu KK, Aleksic N, Sivasubramanian N, McKay K, Mann DL, Willerson JT (2004) Cyclooxygenase-2 inhibitor treatment improves left ventricular function and mortality in a murine model of doxorubicin-induced heart failure. Circulation 109:1428–1433. doi:10.1161/01.CIR.0000121354.34067.48

    Article  PubMed  CAS  Google Scholar 

  52. Devi S, Kennedy RH, Joseph L, Shekhawat NS, Melchert RB, Joseph J (2006) Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovasc Pathol 15:75–82. doi:10.1016/j.carpath.2005.11.001

    Article  PubMed  CAS  Google Scholar 

  53. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Stromberg A, van Veldhuisen DJ, Atar D, Hoes AW, Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K (2008) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 10:933–989. doi:10.1016/j.ejheart.2008.08.005

    Article  PubMed  Google Scholar 

  54. Dodd DA, Atkinson JB, Olson RD, Buck S, Cusack BJ, Fleischer S, Boucek RJ Jr (1993) Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. J Clin Invest 91:1697–1705. doi:10.1172/JCI116379

    Article  PubMed  CAS  Google Scholar 

  55. Doi R, Masuyama T, Yamamoto K, Doi Y, Mano T, Sakata Y, Ono K, Kuzuya T, Hirota S, Koyama T, Miwa T, Hori M (2000) Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats. J Hypertens 18:111–120

    Google Scholar 

  56. Drolet MC, Lachance D, Plante E, Roussel E, Couet J, Arsenault M (2006) Gender-related differences in left ventricular remodeling in chronic severe aortic valve regurgitation in rats. J Heart Valve Dis 15:345–351

    PubMed  Google Scholar 

  57. Du XJ, Autelitano DJ, Dilley RJ, Wang B, Dart AM, Woodcock EA (2000) beta(2)-adrenergic receptor overexpression exacerbates development of heart failure after aortic stenosis. Circulation 101:71–77

    Article  PubMed  CAS  Google Scholar 

  58. Du XJ, Gao XM, Wang B, Jennings GL, Woodcock EA, Dart AM (2000) Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart. Cardiovasc Res 48:448–454

    Article  PubMed  CAS  Google Scholar 

  59. Du XJ, Vincan E, Woodcock DM, Milano CA, Dart AM, Woodcock EA (1996) Response to cardiac sympathetic activation in transgenic mice overexpressing beta 2-adrenergic receptor. Am J Physiol 271:H630–H636

    PubMed  CAS  Google Scholar 

  60. Dubi S, Arbel Y (2010) Large animal models for diastolic dysfunction and diastolic heart failure-a review of the literature. Cardiovasc Pathol 19:147–152. doi:10.1016/j.carpath.2008.12.008

    Article  PubMed  Google Scholar 

  61. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62. doi:10.1172/JCI8768

    Article  PubMed  CAS  Google Scholar 

  62. El-Demerdash E, Awad AS, Taha RM, El-Hady AM, Sayed-Ahmed MM (2005) Probucol attenuates oxidative stress and energy decline in isoproterenol-induced heart failure in rat. Pharmacol Res 51:311–318. doi:10.1016/j.phrs.2004.10.002

    Article  PubMed  CAS  Google Scholar 

  63. Engelhardt S, Boknik P, Keller U, Neumann J, Lohse MJ, Hein L (2001) Early impairment of calcium handling and altered expression of junctin in hearts of mice overexpressing the beta1-adrenergic receptor. FASEB J 15:2718–2720. doi:10.1096/fj.01-0107fje

    PubMed  CAS  Google Scholar 

  64. Engelhardt S, Hein L, Dyachenkow V, Kranias EG, Isenberg G, Lohse MJ (2004) Altered calcium handling is critically involved in the cardiotoxic effects of chronic beta-adrenergic stimulation. Circulation 109:1154–1160. doi:10.1161/01.CIR.0000117254.68497.39

    Article  PubMed  CAS  Google Scholar 

  65. Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 96:7059–7064

    Article  PubMed  CAS  Google Scholar 

  66. Escobales N, Crespo MJ (2008) Early pathophysiological alterations in experimental cardiomyopathy: the Syrian cardiomyopathic hamster. P R Health Sci J 27:307–314

    PubMed  Google Scholar 

  67. Esposito G, Rapacciuolo A, Naga Prasad SV, Takaoka H, Thomas SA, Koch WJ, Rockman HA (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105:85–92

    Article  PubMed  CAS  Google Scholar 

  68. Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR (2001) From infection to autoimmunity. J Autoimmun 16:175–186. doi:10.1006/jaut.2000.0492

    Article  PubMed  CAS  Google Scholar 

  69. Falcao-Pires I, Palladini G, Goncalves N, van der Velden J, Moreira-Goncalves D, Miranda-Silva D, Salinaro F, Paulus WJ, Niessen HW, Perlini S, Leite-Moreira AF (2011) Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol 106:801–814. doi:10.1007/s00395-011-0184-x

    Article  PubMed  CAS  Google Scholar 

  70. Feldman AM, Weinberg EO, Ray PE, Lorell BH (1993) Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73:184–192

    Article  PubMed  CAS  Google Scholar 

  71. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130. doi:10.1172/JCI14080

    PubMed  CAS  Google Scholar 

  72. Francis GS, Tang WH (2003) Pathophysiology of congestive heart failure. Rev Cardiovasc Med 4(Suppl 2):S14–S20

    PubMed  Google Scholar 

  73. Freeman RH, Davis JO, Watkins BE, Stephens GA, DeForrest JM (1979) Effects of continuous converting enzyme blockade on renovascular hypertension in the rat. Am J Physiol 236:F21–F24

    PubMed  CAS  Google Scholar 

  74. Fu M, Matoba M, Liang QM, Sjogren KG, Hjalmarson A (1994) Properties of G-protein modulated receptor-adenylyl cyclase system in myocardium of spontaneously hypertensive rats treated with adriamycin. Int J Cardiol 44:9–18

    Article  PubMed  CAS  Google Scholar 

  75. Fujihira S, Yamamoto T, Matsumoto M, Yoshizawa K, Oishi Y, Fujii T, Noguchi H, Mori H (1993) The high incidence of atrial thrombosis in mice given doxorubicin. Toxicol Pathol 21:362–368

    Article  PubMed  CAS  Google Scholar 

  76. Gao XM, Dart AM, Dewar E, Jennings G, Du XJ (2000) Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res 45:330–338

    Article  PubMed  CAS  Google Scholar 

  77. Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 24:430–432

    Article  PubMed  CAS  Google Scholar 

  78. Gaudin PB, Hruban RH, Beschorner WE, Kasper EK, Olson JL, Baughman KL, Hutchins GM (1993) Myocarditis associated with doxorubicin cardiotoxicity. Am J Clin Pathol 100:158–163

    PubMed  CAS  Google Scholar 

  79. Gehrmann J, Frantz S, Maguire CT, Vargas M, Ducharme A, Wakimoto H, Lee RT, Berul CI (2001) Electrophysiological characterization of murine myocardial ischemia and infarction. Basic Res Cardiol 96:237–250

    Article  PubMed  CAS  Google Scholar 

  80. Georgakopoulos D, Mitzner WA, Chen CH, Byrne BJ, Millar HD, Hare JM, Kass DA (1998) In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry. Am J Physiol 274:H1416–H1422

    PubMed  CAS  Google Scholar 

  81. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on Experimental Hypertension : I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347–379

    Article  PubMed  CAS  Google Scholar 

  82. Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806

    Article  PubMed  CAS  Google Scholar 

  83. Goser S, Andrassy M, Buss SJ, Leuschner F, Volz CH, Ottl R, Zittrich S, Blaudeck N, Hardt SE, Pfitzer G, Rose NR, Katus HA, Kaya Z (2006) Cardiac troponin I but not cardiac troponin T induces severe autoimmune inflammation in the myocardium. Circulation 114:1693–1702. doi:10.1161/CIRCULATIONAHA.106.635664

    Article  PubMed  CAS  Google Scholar 

  84. Goto Y, Suzuki K, Ono T, Sasaki M, Toyota T (1988) Development of diabetes in the non-obese NIDDM rat (GK rat). Adv Exp Med Biol 246:29–31

    Article  PubMed  CAS  Google Scholar 

  85. Gould KE, Taffet GE, Michael LH, Christie RM, Konkol DL, Pocius JS, Zachariah JP, Chaupin DF, Daniel SL, Sandusky GE Jr, Hartley CJ, Entman ML (2002) Heart failure and greater infarct expansion in middle-aged mice: a relevant model for postinfarction failure. Am J Physiol Heart Circ Physiol 282:H615–H621. doi:10.1152/ajpheart.00206.2001

    PubMed  CAS  Google Scholar 

  86. Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR (1997) Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90:729–738

    Article  PubMed  CAS  Google Scholar 

  87. Greer JJ, Ware DP, Lefer DJ (2006) Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol 290:H146–153. doi:10.1152/ajpheart.00583.2005

    Article  PubMed  CAS  Google Scholar 

  88. Grimm D, Elsner D, Schunkert H, Pfeifer M, Griese D, Bruckschlegel G, Muders F, Riegger GA, Kromer EP (1998) Development of heart failure following isoproterenol administration in the rat: role of the renin-angiotensin system. Cardiovasc Res 37:91–100

    Article  PubMed  CAS  Google Scholar 

  89. Grobe JL, Mecca AP, Mao H, Katovich MJ (2006) Chronic angiotensin-(1–7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol 290:H2417–2423. doi:10.1152/ajpheart.01170.2005

    Article  PubMed  CAS  Google Scholar 

  90. Gruver CL, DeMayo F, Goldstein MA, Means AR (1993) Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 133:376–388

    Article  PubMed  CAS  Google Scholar 

  91. Haghighi K, Schmidt AG, Hoit BD, Brittsan AG, Yatani A, Lester JW, Zhai J, Kimura Y, Dorn GW 2nd, MacLennan DH, Kranias EG (2001) Superinhibition of sarcoplasmic reticulum function by phospholamban induces cardiac contractile failure. J Biol Chem 276:24145–24152. doi:10.1074/jbc.M102403200

    Article  PubMed  CAS  Google Scholar 

  92. Halapas A, Papalois A, Stauropoulou A, Philippou A, Pissimissis N, Chatzigeorgiou A, Kamper E, Koutsilieris M (2008) In vivo models for heart failure research. In Vivo 22:767–780

    PubMed  CAS  Google Scholar 

  93. Halapas A, Pissimissis N, Lembessis P, Rizos I, Rigopoulos AG, Kremastinos DT, Koutsilieris M (2008) Molecular diagnosis of the viral component in cardiomyopathies: pathophysiological, clinical and therapeutic implications. Expert Opin Ther Targets 12:821–836. doi:10.1517/14728222.12.7.821

    Article  PubMed  CAS  Google Scholar 

  94. Hara M, Ono K, Hwang MW, Iwasaki A, Okada M, Nakatani K, Sasayama S, Matsumori A (2002) Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 195:375–381

    Article  PubMed  CAS  Google Scholar 

  95. Harding VB, Jones LR, Lefkowitz RJ, Koch WJ, Rockman HA (2001) Cardiac beta ARK1 inhibition prolongs survival and augments beta blocker therapy in a mouse model of severe heart failure. Proc Natl Acad Sci USA 98:5809–5814. doi:10.1073/pnas.091102398

    Article  PubMed  CAS  Google Scholar 

  96. Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, Imanaka-Yoshida K, Itoh T, Takeshita A (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229–1235. doi:10.1152/ajpheart.00207.2003

    PubMed  CAS  Google Scholar 

  97. He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillmann WH (1997) Overexpression of the rat sarcoplasmic reticulum Ca2+ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 100:380–389. doi:10.1172/JCI119544

    Article  PubMed  CAS  Google Scholar 

  98. Herman EH, Ferrans VJ (1998) Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin Oncol 25:15–21

    PubMed  CAS  Google Scholar 

  99. Hessel MH, Steendijk P, den Adel B, Schutte CI, van der Laarse A (2006) Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol 291:H2424–2430. doi:10.1152/ajpheart.00369.2006

    Article  PubMed  CAS  Google Scholar 

  100. Heyen JR, Blasi ER, Nikula K, Rocha R, Daust HA, Frierdich G, Van Vleet JF, De Ciechi P, McMahon EG, Rudolph AE (2002) Structural, functional, and molecular characterization of the SHHF model of heart failure. Am J Physiol Heart Circ Physiol 283:H1775–H1784. doi:10.1152/ajpheart.00305.2002

    PubMed  CAS  Google Scholar 

  101. Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L, Hilfiker-Kleiner D, Janssens S, Latini R, Neubauer G, Paulus WJ, Pieske B, Ponikowski P, Schroen B, Schultheiss HP, Tschope C, Van Bilsen M, Zannad F, McMurray J, Shah AM (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11:119–129. doi:10.1093/eurjhf/hfn043

    Article  PubMed  CAS  Google Scholar 

  102. Heymans S, Pauschinger M, De Palma A, Kallwellis-Opara A, Rutschow S, Swinnen M, Vanhoutte D, Gao F, Torpai R, Baker AH, Padalko E, Neyts J, Schultheiss HP, Van de Werf F, Carmeliet P, Pinto YM (2006) Inhibition of urokinase-type plasminogen activator or matrix metalloproteinases prevents cardiac injury and dysfunction during viral myocarditis. Circulation 114:565–573. doi:10.1161/CIRCULATIONAHA.105.591032

    Article  PubMed  CAS  Google Scholar 

  103. Hibbs RG, Ferrans VJ, Walsh JJ, Burch GE (1965) Electron microscopic observations on lysosomes and related cytoplasmic components of normal and pathological cardiac muscle. Anat Rec 153:173–185

    Article  PubMed  CAS  Google Scholar 

  104. Hirono S, Islam MO, Nakazawa M, Yoshida Y, Kodama M, Shibata A, Izumi T, Imai S (1997) Expression of inducible nitric oxide synthase in rat experimental autoimmune myocarditis with special reference to changes in cardiac hemodynamics. Circ Res 80:11–20

    Article  PubMed  CAS  Google Scholar 

  105. Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J Jr, Muller W, Chien KR (1999) Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97:189–198

    Article  PubMed  CAS  Google Scholar 

  106. Hirota H, Yoshida K, Kishimoto T, Taga T (1995) Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 92:4862–4866

    Article  PubMed  CAS  Google Scholar 

  107. Holycross BJ, Summers BM, Dunn RB, McCune SA (1997) Plasma renin activity in heart failure-prone SHHF/Mcc-facp rats. Am J Physiol 273:H228–H233

    PubMed  CAS  Google Scholar 

  108. Homburger F (1979) Myopathy of hamster dystrophy: history and morphologic aspects. Ann N Y Acad Sci 317:1–17

    PubMed  CAS  Google Scholar 

  109. Homburger F, Baker JR, Nixon CW, Wilgram G (1962) New hereditary disease of Syrian hamsters. Primary, generalized polymyopathy and cardiac necrosis. Arch Intern Med 110:660–662

    Article  PubMed  CAS  Google Scholar 

  110. Homburger F, Nixon CW, Eppenberger M, Baker JR (1966) Hereditary myopathy in the Syrian hamster: studies on pathogenesis. Ann N Y Acad Sci 138:14–27

    Article  PubMed  CAS  Google Scholar 

  111. Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE (2003) Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol 285:H1261–1269. doi:10.1152/ajpheart.00108.2003

    PubMed  CAS  Google Scholar 

  112. Huang WY, Aramburu J, Douglas PS, Izumo S (2000) Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 6:482–483. doi:10.1038/74914

    Article  PubMed  CAS  Google Scholar 

  113. Hunter EG, Hughes V, White J (1984) Cardiomyopathic hamsters, CHF 146 and CHF 147: a preliminary study. Can J Physiol Pharmacol 62:1423–1428

    Article  PubMed  CAS  Google Scholar 

  114. Hunter JJ, Tanaka N, Rockman HA, Ross J Jr, Chien KR (1995) Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 270:23173–23178

    Article  PubMed  CAS  Google Scholar 

  115. Hwang GS, Oh KS, Koo HN, Seo HW, You KH, Lee BH (2006) Effects of KR-31378, a novel ATP-sensitive potassium channel activator, on hypertrophy of H9c2 cells and on cardiac dysfunction in rats with congestive heart failure. Eur J Pharmacol 540:131–138. doi:10.1016/j.ejphar.2006.04.031

    Article  PubMed  CAS  Google Scholar 

  116. Ichihara S, Obata K, Yamada Y, Nagata K, Noda A, Ichihara G, Yamada A, Kato T, Izawa H, Murohara T, Yokota M (2006) Attenuation of cardiac dysfunction by a PPAR-alpha agonist is associated with down-regulation of redox-regulated transcription factors. J Mol Cell Cardiol 41:318–329. doi:10.1016/j.yjmcc.2006.05.013

    Article  PubMed  CAS  Google Scholar 

  117. Ikegami T, Suzuki Y, Shimizu T, Isono K, Koseki H, Shirasawa T (2002) Model mice for tissue-specific deletion of the manganese superoxide dismutase (MnSOD) gene. Biochem Biophys Res Commun 296:729–736

    Article  PubMed  CAS  Google Scholar 

  118. Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the house mouse. J Hered 41:317–318

    PubMed  CAS  Google Scholar 

  119. Inoko M, Kihara Y, Morii I, Fujiwara H, Sasayama S (1994) Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol 267:H2471–H2482

    PubMed  CAS  Google Scholar 

  120. Intengan HD, Park JB, Schiffrin EL (1999) Blood pressure and small arteries in DOCA-salt-treated genetically AVP-deficient rats: role of endothelin. Hypertension 34:907–913

    Article  PubMed  CAS  Google Scholar 

  121. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893. doi:10.1172/JCI117179

    Article  PubMed  CAS  Google Scholar 

  122. Ito H, Torii M, Suzuki T (1995) Decreased superoxide dismutase activity and increased superoxide anion production in cardiac hypertrophy of spontaneously hypertensive rats. Clin Exp Hypertens 17:803–816

    Article  PubMed  CAS  Google Scholar 

  123. Ito K, Yan X, Feng X, Manning WJ, Dillmann WH, Lorell BH (2001) Transgenic expression of sarcoplasmic reticulum Ca(2+) ATPase modifies the transition from hypertrophy to early heart failure. Circ Res 89:422–429

    Article  PubMed  CAS  Google Scholar 

  124. Iwase M, Bishop SP, Uechi M, Vatner DE, Shannon RP, Kudej RK, Wight DC, Wagner TE, Ishikawa Y, Homcy CJ, Vatner SF (1996) Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. Circ Res 78:517–524

    Article  PubMed  CAS  Google Scholar 

  125. Janssen SW, Martens GJ, Sweep CG, Ross HA, Hermus AR (1999) In Zucker diabetic fatty rats plasma leptin levels are correlated with plasma insulin levels rather than with body weight. Horm Metab Res 31:610–615. doi:10.1055/s-2007-978806

    Article  PubMed  CAS  Google Scholar 

  126. Jasmin G, Eu HY (1979) Cardiomyopathy of hamster dystrophy. Ann N Y Acad Sci 317:46–58

    PubMed  CAS  Google Scholar 

  127. Jeong D, Cha H, Kim E, Kang M, Yang DK, Kim JM, Yoon PO, Oh JG, Bernecker OY, Sakata S, Le TT, Cui L, Lee YH, Kim do H, Woo SH, Liao R, Hajjar RJ, Park WJ (2006) PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ Res 99:307–314. doi:10.1161/01.RES.0000234780.06115.2c

    Article  PubMed  CAS  Google Scholar 

  128. Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V, Franzini-Armstrong C, Cleemann L, Morad M (1998) Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest 101:1385–1393. doi:10.1172/JCI1362

    Article  PubMed  CAS  Google Scholar 

  129. Joseph J, Joseph L, Shekhawat NS, Devi S, Wang J, Melchert RB, Hauer-Jensen M, Kennedy RH (2003) Hyperhomocysteinemia leads to pathological ventricular hypertrophy in normotensive rats. Am J Physiol Heart Circ Physiol 285:H679–686. doi:10.1152/ajpheart.00145.2003

    PubMed  CAS  Google Scholar 

  130. Joseph J, Washington A, Joseph L, Koehler L, Fink LM, Hauer-Jensen M, Kennedy RH (2002) Hyperhomocysteinemia leads to adverse cardiac remodeling in hypertensive rats. Am J Physiol Heart Circ Physiol 283:H2567–2574. doi:10.1152/ajpheart.00475.2002

    PubMed  CAS  Google Scholar 

  131. Junhong W, Jing Y, Jizheng M, Shushu Z, Xiangjian C, Hengfang W, Di Y, Jinan Z (2008) Proteomic analysis of left ventricular diastolic dysfunction hearts in renovascular hypertensive rats. Int J Cardiol 127:198–207. doi:10.1016/j.ijcard.2007.07.003

    Article  PubMed  Google Scholar 

  132. Katholi RE, Naftilan AJ, Oparil S (1980) Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat. Hypertension 2:266–273

    Article  PubMed  CAS  Google Scholar 

  133. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T (1992) Spontaneous long-term hyperglycemic rat with diabetic complications—Otsuka Long-Evans Tokushima Fatty (Oletf) strain. Diabetes 41:1422–1428

    Article  PubMed  CAS  Google Scholar 

  134. Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H, Hadri L, Yoneyama R, Hoshino K, Takewa Y, Sakata S, Peluso R, Zsebo K, Gwathmey JK, Tardif JC, Tanguay JF, Hajjar RJ (2008) Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 51:1112–1119. doi:10.1016/j.jacc.2007.12.014

    Article  PubMed  CAS  Google Scholar 

  135. Kay JM, Smith P, Heath D (1969) Electron microscopy of Crotalaria pulmonary hypertension. Thorax 24:511–526

    Article  PubMed  CAS  Google Scholar 

  136. Kazumi T, Odaka H, Hozumi T, Ishida Y, Amano N, Yoshino G (1997) Effects of dietary fructose or glucose on triglyceride production and lipogenic enzyme activities in the liver of Wistar fatty rats, an animal model of NIDDM. Endocr J 44:239–245

    Article  PubMed  CAS  Google Scholar 

  137. Kim S, Yoshiyama M, Izumi Y, Kawano H, Kimoto M, Zhan Y, Iwao H (2001) Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation 103:148–154

    Article  PubMed  CAS  Google Scholar 

  138. Kiss E, Ball NA, Kranias EG, Walsh RA (1995) Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2+)-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 77:759–764

    Article  PubMed  CAS  Google Scholar 

  139. Klotz S, Hay I, Zhang G, Maurer M, Wang J, Burkhoff D (2006) Development of heart failure in chronic hypertensive Dahl rats: focus on heart failure with preserved ejection fraction. Hypertension 47:901–911. doi:10.1161/01.HYP.0000215579.81408.8e

    Article  PubMed  CAS  Google Scholar 

  140. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA, Lefkowitz RJ (1995) Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 268:1350–1353

    Article  PubMed  CAS  Google Scholar 

  141. Konduracka E, Gackowski A, Rostoff P, Galicka-Latala D, Frasik W, Piwowarska W (2007) Diabetes-specific cardiomyopathy in type 1 diabetes mellitus: no evidence for its occurrence in the era of intensive insulin therapy. Eur Heart J 28:2465–2471. doi:10.1093/eurheartj/ehm361

    Article  PubMed  Google Scholar 

  142. Krzeminski TF, Nozynski JK, Grzyb J, Porc M (2008) Wide-spread myocardial remodeling after acute myocardial infarction in rat. Features for heart failure progression. Vascul Pharmacol 48:100–108. doi:10.1016/j.vph.2008.01.002

    Article  PubMed  CAS  Google Scholar 

  143. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81:627–635

    Article  PubMed  CAS  Google Scholar 

  144. Kuhlmann MT, Kirchhof P, Klocke R, Hasib L, Stypmann J, Fabritz L, Stelljes M, Tian W, Zwiener M, Mueller M, Kienast J, Breithardt G, Nikol S (2006) G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 203:87–97. doi:10.1084/jem.20051151

    Article  PubMed  CAS  Google Scholar 

  145. Kumar A, Crawford K, Close L, Madison M, Lorenz J, Doetschman T, Pawlowski S, Duffy J, Neumann J, Robbins J, Boivin GP, O’Toole BA, Lessard JL (1997) Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci USA 94:4406–4411

    Article  PubMed  CAS  Google Scholar 

  146. Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL (2000) Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A 97:5456–5461. doi:10.1073/pnas.070036297

    Article  PubMed  CAS  Google Scholar 

  147. Kuwajima I, Kardon MB, Pegram BL, Sesoko S, Frohlich ED (1982) Regression of left ventricular hypertrophy in two-kidney, one clip Goldblatt hypertension. Hypertension 4:113–118

    PubMed  CAS  Google Scholar 

  148. Langenickel T, Pagel I, Hohnel K, Dietz R, Willenbrock R (2000) Differential regulation of cardiac ANP and BNP mRNA in different stages of experimental heart failure. Am J Physiol Heart Circ Physiol 278:H1500–H1506

    PubMed  CAS  Google Scholar 

  149. Lebrecht D, Kokkori A, Ketelsen UP, Setzer B, Walker UA (2005) Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. J Pathol 207:436–444. doi:10.1002/path.1863

    Article  PubMed  CAS  Google Scholar 

  150. Leenen FH, de Jong W (1975) Plasma renin and sodium balance during development of moderate and severe renal hypertension in rats. Circ Res 36:179–186

    Article  PubMed  CAS  Google Scholar 

  151. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314

    Article  PubMed  CAS  Google Scholar 

  152. Leite-Moreira AF (2006) Current perspectives in diastolic dysfunction and diastolic heart failure. Heart 92:712–718. doi:10.1136/hrt.2005.062950

    Article  PubMed  Google Scholar 

  153. Li JM, Yao ZF, Zou YZ, Ge JB, Guan AL, Wu J, Mi SL, Liang YY, Ma Z (2011) The therapeutic potential of G-CSF in pressure overload induced ventricular reconstruction and heart failure in mice. Mol Biol Rep doi:10.1007/s11033-011-0703-8

  154. Li L, Chu Y, Fink GD, Engelhardt JF, Heistad DD, Chen AF (2003) Endothelin-1 stimulates arterial VCAM-1 expression via NADPH oxidase-derived superoxide in mineralocorticoid hypertension. Hypertension 42:997–1003. doi:10.1161/01.HYP.0000095980.43859.59

    Article  PubMed  CAS  Google Scholar 

  155. Li Y, Takemura G, Kosai K, Takahashi T, Okada H, Miyata S, Yuge K, Nagano S, Esaki M, Khai NC, Goto K, Mikami A, Maruyama R, Minatoguchi S, Fujiwara T, Fujiwara H (2004) Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure. Circ Res 95:627–636. doi:10.1161/01.RES.0000141528.54850.bd

    Article  PubMed  CAS  Google Scholar 

  156. Li YY, Feldman AM (2001) Matrix metalloproteinases in the progression of heart failure: potential therapeutic implications. Drugs 61:1239–1252

    Article  PubMed  CAS  Google Scholar 

  157. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG (1997) Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 272:H2313–H2319

    PubMed  CAS  Google Scholar 

  158. Li Z, Tran TT, Ma JY, O’Young G, Kapoun AM, Chakravarty S, Dugar S, Schreiner G, Protter AA (2004) p38 alpha mitogen-activated protein kinase inhibition improves cardiac function and reduces myocardial damage in isoproterenol-induced acute myocardial injury in rats. J Cardiovasc Pharmacol 44:486–492.

    Article  PubMed  CAS  Google Scholar 

  159. Liggett SB, Tepe NM, Lorenz JN, Canning AM, Jantz TD, Mitarai S, Yatani A, Dorn GW 2nd (2000) Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101:1707–1714

    Article  PubMed  CAS  Google Scholar 

  160. Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM, Liao R, Sawyer DB (2004) Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 279:8290–8299. doi:10.1074/jbc.M308033200

    Article  PubMed  CAS  Google Scholar 

  161. Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, Heller Brown J (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119:1230–1240. doi:10.1172/JCI38022

    Article  PubMed  CAS  Google Scholar 

  162. Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemma GP, Douglas PS (1995) Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation 91:2642–2654

    Article  PubMed  CAS  Google Scholar 

  163. Liu P, Penninger J, Aitken K, Sole M, Mak T (1995) The role of transgenic knockout models in defining the pathogenesis of viral heart disease. Eur Heart J 16 Suppl O:25–27

    Google Scholar 

  164. Liu YH, Yang XP, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol 272:H722–H727

    PubMed  CAS  Google Scholar 

  165. Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ Res 69:52–58

    Article  PubMed  CAS  Google Scholar 

  166. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121:e46–e215. doi:10.1161/CIRCULATIONAHA.109.192667

    Article  PubMed  Google Scholar 

  167. London B, Baker LC, Lee JS, Shusterman V, Choi BR, Kubota T, McTiernan CF, Feldman AM, Salama G (2003) Calcium-dependent arrhythmias in transgenic mice with heart failure. Am J Physiol Heart Circ Physiol 284:H431–441. doi:10.1152/ajpheart.00431.2002

    PubMed  CAS  Google Scholar 

  168. Lou H, Danelisen I, Singal PK (2004) Cytokines are not upregulated in adriamycin-induced cardiomyopathy and heart failure. J Mol Cell Cardiol 36:683–690. doi:10.1016/j.yjmcc.2004.03.004

    Article  PubMed  CAS  Google Scholar 

  169. Luo J, Fujikura K, Homma S, Konofagou EE (2007) Myocardial elastography at both high temporal and spatial resolution for the detection of infarcts. Ultrasound Med Biol 33:1206–1223. doi:10.1016/j.ultrasmedbio.2007.01.019

    Article  PubMed  Google Scholar 

  170. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 75:401–409

    Article  PubMed  CAS  Google Scholar 

  171. Lygate CA, Schneider JE, Hulbert K, ten Hove M, Sebag-Montefiore LM, Cassidy PJ, Clarke K, Neubauer S (2006) Serial high resolution 3D-MRI after aortic banding in mice: band internalization is a source of variability in the hypertrophic response. Basic Res Cardiol 101:8–16. doi:10.1007/s00395-005-0546-3

    Article  PubMed  Google Scholar 

  172. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577. doi:10.1038/nrm1151

    Article  PubMed  CAS  Google Scholar 

  173. Maier LS, Wahl-Schott C, Horn W, Weichert S, Pagel C, Wagner S, Dybkova N, Muller OJ, Nabauer M, Franz WM, Pieske B (2005) Increased SR Ca2+ cycling contributes to improved contractile performance in SERCA2a-overexpressing transgenic rats. Cardiovasc Res 67:636–646. doi:10.1016/j.cardiores.2005.05.006

    Article  PubMed  CAS  Google Scholar 

  174. Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91:988–998

    Article  PubMed  CAS  Google Scholar 

  175. Manning RD Jr, Meng S, Tian N (2003) Renal and vascular oxidative stress and salt-sensitivity of arterial pressure. Acta Physiol Scand 179:243–250

    Article  PubMed  CAS  Google Scholar 

  176. Marian AJ, Roberts R (2001) The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 33:655–670. doi:10.1006/jmcc.2001.1340

    Article  PubMed  CAS  Google Scholar 

  177. Matsumori A, Kawai C (1982) An experimental model for congestive heart failure after encephalomyocarditis virus myocarditis in mice. Circulation 65:1230–1235

    Article  PubMed  CAS  Google Scholar 

  178. Matsumori A, Sasayama S (1995) Immunomodulating agents for the management of heart failure with myocarditis and cardiomyopathy–lessons from animal experiments. Eur Heart J 16 Suppl O:140–143

    Google Scholar 

  179. Matsumura Y, Hashimoto N, Taira S, Kuro T, Kitano R, Ohkita M, Opgenorth TJ, Takaoka M (1999) Different contributions of endothelin-A and endothelin-B receptors in the pathogenesis of deoxycorticosterone acetate-salt-induced hypertension in rats. Hypertension 33:759–765

    Article  PubMed  CAS  Google Scholar 

  180. McCully JD, Jandreski MA, Liew J, Sole MJ, Liew CC (1987) Construction of cosmid genomic libraries for the normal and myopathic Syrian hamsters. Biochem Cell Biol 65:997–1000

    Article  PubMed  CAS  Google Scholar 

  181. McMurray J, Pfeffer MA (2002) New therapeutic options in congestive heart failure: Part I. Circulation 105:2099–2106

    Article  PubMed  Google Scholar 

  182. McMurray J, Pfeffer MA (2002) New therapeutic options in congestive heart failure: Part II. Circulation 105:2223–2228

    Article  PubMed  Google Scholar 

  183. Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ (1998) Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 95:13893–13898

    Article  PubMed  CAS  Google Scholar 

  184. Mendez GF, Cowie MR (2001) The epidemiological features of heart failure in developing countries: a review of the literature. Int J Cardiol 80:213–219

    Article  PubMed  CAS  Google Scholar 

  185. Menna P, Recalcati S, Cairo G, Minotti G (2007) An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc Toxicol 7:80–85. doi:10.1007/s12012-007-0011-7

    Article  PubMed  CAS  Google Scholar 

  186. Mering JV MO (1889) Diabetes mellitus nach Pankreasextirpation. Centralblatt fu¨ r klinische Medicin, Leipzig10:383

  187. Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, Hawkins HK, Berens K, Ballantyne CM (1995) Myocardial ischemia and reperfusion: a murine model. Am J Physiol 269:H2147–H2154

    PubMed  CAS  Google Scholar 

  188. Michael O’Donnell J, Narayan P, Bailey MQ, Abduljalil AM, Altschuld RA, McCune SA, Robitaille PM (1998) 31P-NMR analysis of congestive heart failure in the SHHF/Mcc-facp rat heart. J Mol Cell Cardiol 30:235–241. doi:10.1006/jmcc.1997.0587

    Article  PubMed  Google Scholar 

  189. Mihm MJ, Yu F, Weinstein DM, Reiser PJ, Bauer JA (2002) Intracellular distribution of peroxynitrite during doxorubicin cardiomyopathy: evidence for selective impairment of myofibrillar creatine kinase. Br J Pharmacol 135:581–588. doi:10.1038/sj.bjp.0704495

    Article  PubMed  CAS  Google Scholar 

  190. Milano CA, Allen LF, Dolber PC, Johnson TD, Rockman HA, Bond RA, Lefkowitz RJ (1995) Marked enhancement in myocardial function resulting from overexpression of a human beta-adrenergic receptor gene. J Thorac Cardiovasc Surg 109:236–241

    Article  PubMed  CAS  Google Scholar 

  191. Milano CA, Dolber PC, Rockman HA, Bond RA, Venable ME, Allen LF, Lefkowitz RJ (1994) Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 91:10109–10113

    Article  PubMed  CAS  Google Scholar 

  192. Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134:1255–1270

    Article  PubMed  CAS  Google Scholar 

  193. Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y, Martone ME, Wang Y, Ross J Jr, Kranias EG, Giles WR, Chien KR (1999) Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99:313–322

    Article  PubMed  CAS  Google Scholar 

  194. Mitchell GF, Pfeffer JM, Pfeffer MA (1997) The transition to failure in the spontaneously hypertensive rat. Am J Hypertens 10:120S–126S

    Article  PubMed  CAS  Google Scholar 

  195. Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, Elsaesser RS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans JP, Vrints CJ, Kass DA (2008) High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation 117:1810–1819. doi:10.1161/CIRCULATIONAHA.107.725481

    Article  PubMed  CAS  Google Scholar 

  196. Moens AL, Ketner EA, Takimoto E, Schmidt TS, O’Neill CA, Wolin MS, Alp NJ, Channon KM, Kass DA (2011) Bi-modal dose-dependent cardiac response to tetrahydrobiopterin in pressure-overload induced hypertrophy and heart failure. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2011.05.017

  197. Moens AL, Leyton-Mange JS, Niu X, Yang R, Cingolani O, Arkenbout EK, Champion HC, Bedja D, Gabrielson KL, Chen J, Xia Y, Hale AB, Channon KM, Halushka MK, Barker N, Wuyts FL, Kaminski PM, Wolin MS, Kass DA, Barouch LA (2009) Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor. J Mol Cell Cardiol 47:576–585. doi:10.1016/j.yjmcc.2009.06.005

    Article  PubMed  CAS  Google Scholar 

  198. Mohammed SF, Storlie JR, Oehler EA, Bowen LA, Korinek J, Lam CS, Simari RD, Burnett JC Jr, Redfield MM (2011) Variable phenotype in murine transverse aortic constriction. Cardiovasc Pathol. doi:10.1016/j.carpath.2011.05.002

    PubMed  Google Scholar 

  199. Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG, Chrisco MA, Murphy RT, Lurie PR, Schwartz RJ, Elliott PM, Vatta M, McKenna W, Towbin JA, Bowles NE (2003) Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 80:207–215

    Article  PubMed  CAS  Google Scholar 

  200. Molina EJ, Gupta D, Palma J, Torres D, Gaughan JP, Houser S, Macha M (2009) Novel experimental model of pressure overload hypertrophy in rats. J Surg Res 153:287–294. doi:10.1016/j.jss.2008.03.043

    Article  PubMed  Google Scholar 

  201. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  202. Molkentin JD, Robbins J (2009) With great power comes great responsibility: using mouse genetics to study cardiac hypertrophy and failure. J Mol Cell Cardiol 46:130–136. doi:10.1016/j.yjmcc.2008.09.002

    Article  PubMed  CAS  Google Scholar 

  203. Monnet E, Chachques JC (2005) Animal models of heart failure: what is new? Ann Thorac Surg 79:1445–1453. doi:10.1016/j.athoracsur.2004.04.002

    Article  PubMed  Google Scholar 

  204. Moreau P, Schiffrin EL (2003) Role of endothelins in animal models of hypertension: focus on cardiovascular protection. Can J Physiol Pharmacol 81:511–521. doi:10.1139/y03-015

    Article  PubMed  CAS  Google Scholar 

  205. Movsesian MA, Kukreja RC (2011) Phosphodiesterase inhibition in heart failure. Handb Exp Pharmacol 237–249 doi:10.1007/978-3-642-17969-3_10

  206. Muller FU, Kirchhefer U, Begrow F, Reinke U, Neumann J, Schmitz W (2002) Junctional sarcoplasmic reticulum transmembrane proteins in the heart. Basic Res Cardiol 97(Suppl 1):I52–I55

    PubMed  Google Scholar 

  207. Murakami K, Mizushige K, Noma T, Tsuji T, Kimura S, Kohno M (2002) Perindopril effect on uncoupling protein and energy metabolism in failing rat hearts. Hypertension 40:251–255

    Article  PubMed  CAS  Google Scholar 

  208. Murata T, Yamawaki H, Yoshimoto R, Hori M, Sato K, Ozaki H, Karaki H (2001) Chronic effect of doxorubicin on vascular endothelium assessed by organ culture study. Life Sci 69:2685–2695

    Article  PubMed  CAS  Google Scholar 

  209. Muth JN, Bodi I, Lewis W, Varadi G, Schwartz A (2001) A Ca(2+)-dependent transgenic model of cardiac hypertrophy: a role for protein kinase Calpha. Circulation 103:140–147

    Article  PubMed  CAS  Google Scholar 

  210. Nagano M, Kato M, Nagai M, Yang J (1991) Protective effect of ACE- and kininase-inhibitor on the onset of cardiomyopathy. Basic Res Cardiol 86(Suppl 3):187–195

    PubMed  Google Scholar 

  211. Nagatsu M, Zile MR, Tsutsui H, Schmid PG, DeFreyte G, Cooper Gt, Carabello BA (1994) Native beta-adrenergic support for left ventricular dysfunction in experimental mitral regurgitation normalizes indexes of pump and contractile function. Circulation 89:818–826

    Article  PubMed  CAS  Google Scholar 

  212. Nigro V, Okazaki Y, Belsito A, Piluso G, Matsuda Y, Politano L, Nigro G, Ventura C, Abbondanza C, Molinari AM, Acampora D, Nishimura M, Hayashizaki Y, Puca GA (1997) Identification of the Syrian hamster cardiomyopathy gene. Hum Mol Genet 6:601–607

    Article  PubMed  CAS  Google Scholar 

  213. Nishio R, Sasayama S, Matsumori A (2002) Left ventricular pressure-volume relationship in a murine model of congestive heart failure due to acute viral myocarditis. J Am Coll Cardiol 40:1506–1514

    Article  PubMed  Google Scholar 

  214. O’Donnell SM, Hansberger MW, Connolly JL, Chappell JD, Watson MJ, Pierce JM, Wetzel JD, Han W, Barton ES, Forrest JC, Valyi-Nagy T, Yull FE, Blackwell TS, Rottman JN, Sherry B, Dermody TS (2005) Organ-specific roles for transcription factor NF-kappaB in reovirus-induced apoptosis and disease. J Clin Invest 115:2341–2350. doi:10.1172/JCI22428

    Article  PubMed  CAS  Google Scholar 

  215. Ogata T, Miyauchi T, Sakai S, Takanashi M, Irukayama-Tomobe Y, Yamaguchi I (2004) Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. J Am Coll Cardiol 43:1481–1488. doi:10.1016/j.jacc.2003.11.043

    Article  PubMed  CAS  Google Scholar 

  216. Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki T, Irie-Sasaki J, Gidrewicz D, Rybin VO, Wada T, Steinberg SF, Backx PH, Penninger JM (2003) Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation 108:2147–2152. doi:10.1161/01.CIR.0000091403.62293.2B

    Article  PubMed  CAS  Google Scholar 

  217. Ozek C, Zhang F, Lineaweaver WC, Chin BT, Eiman T, Newlin L, Buncke HJ (1998) A new heart failure model in rat by an end-to-side femoral vessel anastomosis. Cardiovasc Res 37:236–238

    Article  PubMed  CAS  Google Scholar 

  218. Pacher P, Nagayama T, Mukhopadhyay P, Batkai S, Kass DA (2008) Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc 3:1422–1434. doi:10.1038/nprot.2008.138

    Article  PubMed  CAS  Google Scholar 

  219. Padmanabhan M, Prince PS (2006) Preventive effect of S-allylcysteine on lipid peroxides and antioxidants in normal and isoproterenol-induced cardiotoxicity in rats: a histopathological study. Toxicology 224:128–137. doi:10.1016/j.tox.2006.04.039

    Article  PubMed  CAS  Google Scholar 

  220. Padmanabhan M, Rajadurai M, Prince PS (2008) Preventive effect of S-allylcysteine on membrane-bound enzymes and glycoproteins in normal and isoproterenol-induced cardiac toxicity in male Wistar rats. Basic Clin Pharmacol Toxicol 103:507–513. doi:10.1111/j.1742-7843.2008.00244.x

    Article  PubMed  CAS  Google Scholar 

  221. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M (2000) Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA 97:931–936

    Article  PubMed  CAS  Google Scholar 

  222. Park SC, Liu-Stratton Y, Medeiros LC, McCune SA, Radin MJ (2004) Effect of male sex and obesity on platelet arachidonic acid in spontaneous hypertensive heart failure rats. Exp Biol Med (Maywood) 229:657–664

    CAS  Google Scholar 

  223. Patten RD, Hall-Porter MR (2009) Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail 2:138–144. doi:10.1161/CIRCHEARTFAILURE.108.839761

    Article  PubMed  Google Scholar 

  224. Peng X, Chen B, Lim CC, Sawyer DB (2005) The cardiotoxicology of anthracycline chemotherapeutics: translating molecular mechanism into preventative medicine. Mol Interv 5:163–171. doi:10.1124/mi.5.3.6

    Article  PubMed  CAS  Google Scholar 

  225. Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, Nieman ML, Riddle T, Duffy JJ, Doetschman T, Lorenz JN, Shull GE (1999) Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem 274:2556–2562

    Article  PubMed  CAS  Google Scholar 

  226. Pfeffer JM, Pfeffer MA, Fishbein MC, Frohlich ED (1979) Cardiac function and morphology with aging in the spontaneously hypertensive rat. Am J Physiol 237:H461–H468

    PubMed  CAS  Google Scholar 

  227. Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E (1982) Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci USA 79:3310–3314

    Article  PubMed  CAS  Google Scholar 

  228. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512

    Article  PubMed  CAS  Google Scholar 

  229. Pleger ST, Remppis A, Heidt B, Volkers M, Chuprun JK, Kuhn M, Zhou RH, Gao E, Szabo G, Weichenhan D, Muller OJ, Eckhart AD, Katus HA, Koch WJ, Most P (2005) S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction. Mol Ther 12:1120–1129. doi:10.1016/j.ymthe.2005.08.002

    Article  PubMed  CAS  Google Scholar 

  230. Plestina R, Stoner HB (1972) Pulmonary oedema in rats given monocrotaline pyrrole. J Pathol 106:235–249. doi:10.1002/path.1711060405

    Article  PubMed  CAS  Google Scholar 

  231. Porter CB, Walsh RA, Badke FR, O’Rourke RA (1983) Differential effects of diltiazem and nitroprusside on left ventricular function in experimental chronic volume overload. Circulation 68:685–692

    Article  PubMed  CAS  Google Scholar 

  232. Rakieten N, Rakieten ML, Nadkarni MV (1963) Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep 29:91–98

    Google Scholar 

  233. Redfern CH, Degtyarev MY, Kwa AT, Salomonis N, Cotte N, Nanevicz T, Fidelman N, Desai K, Vranizan K, Lee EK, Coward P, Shah N, Warrington JA, Fishman GI, Bernstein D, Baker AJ, Conklin BR (2000) Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. Proc Natl Acad Sci USA 97:4826–4831

    Article  PubMed  CAS  Google Scholar 

  234. Redfield MM (2000) Epidemiology and pathophysiology of heart failure. Curr Cardiol Rep 2:179–180

    Article  PubMed  CAS  Google Scholar 

  235. Reed AL, Tanaka A, Sorescu D, Liu H, Jeong EM, Sturdy M, Walp ER, Dudley SC Jr, Sutliff RL (2011) Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse. Am J Physiol Heart Circ Physiol 301:H824–831. doi:10.1152/ajpheart.00407.2010

    Article  PubMed  CAS  Google Scholar 

  236. Rerup CC (1970) Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev 22:485–518

    PubMed  CAS  Google Scholar 

  237. Rizzi E, Castro MM, Prado CM, Silva CA, Fazan R Jr, Rossi MA, Tanus-Santos JE, Gerlach RF (2010) Matrix metalloproteinase inhibition improves cardiac dysfunction and remodeling in 2-kidney, 1-clip hypertension. J Card Fail 16:599–608. doi:10.1016/j.cardfail.2010.02.005

    Article  PubMed  CAS  Google Scholar 

  238. Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ, Ross J Jr, Lefkowitz RJ, Koch WJ (1998) Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci USA 95:7000–7005

    Article  PubMed  CAS  Google Scholar 

  239. Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, Ross J Jr, Chien KR (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA 88:8277–8281

    Article  PubMed  CAS  Google Scholar 

  240. Rockman HA, Wachhorst SP, Mao L, Ross J Jr (1994) ANG II receptor blockade prevents ventricular hypertrophy and ANF gene expression with pressure overload in mice. Am J Physiol 266:H2468–H2475

    PubMed  CAS  Google Scholar 

  241. Rodriguez-Iturbe B, Quiroz Y, Kim CH, Vaziri ND (2005) Hypertension induced by aortic coarctation above the renal arteries is associated with immune cell infiltration of the kidneys. Am J Hypertens 18:1449–1456. doi:10.1016/j.amjhyper.2005.05.034

    Article  PubMed  CAS  Google Scholar 

  242. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK (1999) Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem 274:16701–16708

    Article  PubMed  CAS  Google Scholar 

  243. Ruiz-Hurtado G, Fernandez-Velasco M, Mourelle M, Delgado C (2007) LA419, a novel nitric oxide donor, prevents pathological cardiac remodeling in pressure-overloaded rats via endothelial nitric oxide synthase pathway regulation. Hypertension 50:1049–1056. doi:10.1161/HYPERTENSIONAHA.107.093666

    Google Scholar 

  244. Ruiz P, Witt H (2006) Microarray analysis to evaluate different animal models for human heart failure. J Mol Cell Cardiol 40:13–15. doi:10.1016/j.yjmcc.2005.09.010

    Article  PubMed  CAS  Google Scholar 

  245. Ryu JH, Kim IK, Cho SW, Cho MC, Hwang KK, Piao H, Piao S, Lim SH, Hong YS, Choi CY, Yoo KJ, Kim BS (2005) Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26:319–326. doi:10.1016/j.biomaterials.2004.02.058

    Article  PubMed  CAS  Google Scholar 

  246. Sah VP, Minamisawa S, Tam SP, Wu TH, Dorn GW 2nd, Ross J Jr, Chien KR, Brown JH (1999) Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 103:1627–1634. doi:10.1172/JCI6842

    Article  PubMed  CAS  Google Scholar 

  247. Sakamoto A (2004) Electrical and ionic abnormalities in the heart of cardiomyopathic hamsters: in quest of a new paradigm for cardiac failure and lethal arrhythmia. Mol Cell Biochem 259:183–187

    Article  PubMed  CAS  Google Scholar 

  248. Sakamoto A, Abe M, Masaki T (1999) Delineation of genomic deletion in cardiomyopathic hamster. FEBS Lett 447:124–128

    Article  PubMed  CAS  Google Scholar 

  249. Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-oka T, Hanaoka F (1997) Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA 94:13873–13878

    Article  PubMed  CAS  Google Scholar 

  250. Sanbe A, Gulick J, Hanks MC, Liang Q, Osinska H, Robbins J (2003) Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ Res 92:609–616. doi:10.1161/01.RES.0000065442.64694.9F

    Article  PubMed  CAS  Google Scholar 

  251. Sato Y, Ferguson DG, Sako H, Dorn GW 2nd, Kadambi VJ, Yatani A, Hoit BD, Walsh RA, Kranias EG (1998) Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J Biol Chem 273:28470–28477

    Article  PubMed  CAS  Google Scholar 

  252. Sato Y, Kiriazis H, Yatani A, Schmidt AG, Hahn H, Ferguson DG, Sako H, Mitarai S, Honda R, Mesnard-Rouiller L, Frank KF, Beyermann B, Wu G, Fujimori K, Dorn GW 2nd, Kranias EG (2001) Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation. J Biol Chem 276:9392–9399. doi:10.1074/jbc.M006889200

    Article  PubMed  CAS  Google Scholar 

  253. Satoh S, Ueda Y, Suematsu N, Oyama J, Kadokami T, Sugano M, Yoshikawa Y, Makino N (2003) Beneficial effects of angiotensin-converting enzyme inhibition on sarcoplasmic reticulum function in the failing heart of the Dahl rat. Circ J 67:705–711

    Article  PubMed  CAS  Google Scholar 

  254. Sawyer DB, Fukazawa R, Arstall MA, Kelly RA (1999) Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ Res 84:257–265

    Article  PubMed  CAS  Google Scholar 

  255. Sawyer DB, Peng X, Chen B, Pentassuglia L, Lim CC (2010) Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis 53:105–113. doi:10.1016/j.pcad.2010.06.007

    Article  PubMed  CAS  Google Scholar 

  256. Scheuermann-Freestone M, Freestone NS, Langenickel T, Hohnel K, Dietz R, Willenbrock R (2001) A new model of congestive heart failure in the mouse due to chronic volume overload. Eur J Heart Fail 3:535–543

    Article  PubMed  CAS  Google Scholar 

  257. Schiffrin EL (2000) Endothelin: role in experimental hypertension. J Cardiovasc Pharmacol 35:S33–S35

    Article  PubMed  CAS  Google Scholar 

  258. Schiffrin EL (2001) Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens 14:83S–89S. doi:S089570610102074X

    Article  PubMed  CAS  Google Scholar 

  259. Schlenker EH, Kost CK Jr, Likness MM (2004) Effects of long-term captopril and l-arginine treatment on ventilation and blood pressure in obese male SHHF rats. J Appl Physiol 97:1032–1039. doi:10.1152/japplphysiol.00255.2004

    Article  PubMed  CAS  Google Scholar 

  260. Schmidt-Supprian M, Rajewsky K (2007) Vagaries of conditional gene targeting. Nat Immunol 8:665–668. doi:10.1038/ni0707-665

    Article  PubMed  CAS  Google Scholar 

  261. Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, Kranias EG, MacLennan DH, Seidman JG, Seidman CE (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299:1410–1413. doi:10.1126/science.1081578299/5611/1410

    Article  PubMed  CAS  Google Scholar 

  262. Schoental R, Head MA (1955) Pathological changes in rats as a result of treatment with monocrotaline. Br J Cancer 9:229–237

    Article  PubMed  CAS  Google Scholar 

  263. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913–1920. doi:10.1172/JCI114924

    Google Scholar 

  264. Schwarz B, Percy E, Gao XM, Dart AM, Richardt G, Du XJ (2003) Altered calcium transient and development of hypertrophy in beta2-adrenoceptor overexpressing mice with and without pressure overload. Eur J Heart Fail 5:131–136.

    Article  PubMed  CAS  Google Scholar 

  265. Schwinger RH, Bohm M, Erdmann E (1990) Evidence against spare or uncoupled beta-adrenoceptors in the human heart. Am Heart J 119:899–904

    Article  PubMed  CAS  Google Scholar 

  266. Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92:3220–3228

    Article  PubMed  CAS  Google Scholar 

  267. Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104:557–567

    Article  PubMed  CAS  Google Scholar 

  268. Selye H (1942) Production of nephrosclerosis by overdosage with desoxycorticosterone acetate. Can Med Assoc J 47:515–519

    PubMed  CAS  Google Scholar 

  269. Shai SY, Harpf AE, Babbitt CJ, Jordan MC, Fishbein MC, Chen J, Omura M, Leil TA, Becker KD, Jiang M, Smith DJ, Cherry SR, Loftus JC, Ross RS (2002) Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 90:458–464

    Article  PubMed  CAS  Google Scholar 

  270. Shen FM, Xie HH, Ling G, Xu LP, Su DF (2005) Synergistic effects of atenolol and amlodipine for lowering and stabilizing blood pressure in 2K1C renovascular hypertensive rats. Acta Pharmacol Sin 26:1303–1308. doi:10.1111/j.1745-7254.2005.00185.x

    Article  PubMed  CAS  Google Scholar 

  271. Shimizu T, Nojiri H, Kawakami S, Uchiyama S, Shirasawa T (2010) Model mice for tissue-specific deletion of the manganese superoxide dismutase gene. Geriatr Gerontol Int 10(Suppl 1):S70–79. doi:10.1111/j.1447-0594.2010.00604.x

    Article  PubMed  Google Scholar 

  272. Shusterman V, Usiene I, Harrigal C, Lee JS, Kubota T, Feldman AM, London B (2002) Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice. Am J Physiol Heart Circ Physiol 282:H2076–H2083. doi:10.1152/ajpheart.00917.2001

    PubMed  CAS  Google Scholar 

  273. Sicard P, Oudot A, Guilland JC, Moreau D, Vergely C, Rochette L (2006) Dissociation between vascular oxidative stress and cardiovascular function in Wistar Kyoto and spontaneously hypertensive rats. Vascul Pharmacol 45:112–121. doi:10.1016/j.vph.2006.04.001

    Article  PubMed  CAS  Google Scholar 

  274. Silberman GA, Fan TH, Liu H, Jiao Z, Xiao HD, Lovelock JD, Boulden BM, Widder J, Fredd S, Bernstein KE, Wolska BM, Dikalov S, Harrison DG, Dudley SC Jr (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121:519–528. doi:10.1161/CIRCULATIONAHA.109.883777

    Article  PubMed  CAS  Google Scholar 

  275. Silver DP, Livingston DM (2001) Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell 8:233–243

    Article  PubMed  CAS  Google Scholar 

  276. Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V (2009) Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61:154–171

    PubMed  CAS  Google Scholar 

  277. Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, Penninger JM, Molkentin JD (2001) Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res 89:20–25

    Article  PubMed  CAS  Google Scholar 

  278. Stansfield WE, Rojas M, Corn D, Willis M, Patterson C, Smyth SS, Selzman CH (2007) Characterization of a model to independently study regression of ventricular hypertrophy. J Surg Res 142:387–393. doi:10.1016/j.jss.2007.01.037

    Article  PubMed  Google Scholar 

  279. Stock JH, Reller MD, Sharma S, Pavcnik D, Shiota T, Sahn DJ (1997) Transballoon intravascular ultrasound imaging during balloon angioplasty in animal models with coarctation and branch pulmonary stenosis. Circulation 95:2354–2357

    Article  PubMed  CAS  Google Scholar 

  280. Sun ZJ, Zhang ZE (2005) Historic perspectives and recent advances in major animal models of hypertension. Acta Pharmacol Sin 26:295–301. doi:10.1111/j.1745-7254.2005.00054.x

    Article  PubMed  CAS  Google Scholar 

  281. Surwit RS, Feinglos MN, Rodin J, Sutherland A, Petro AE, Opara EC, Kuhn CM, Rebuffe-Scrive M (1995) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44:645–651

    Article  PubMed  CAS  Google Scholar 

  282. Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 105:875–886. doi:10.1172/JCI8497

    Article  PubMed  CAS  Google Scholar 

  283. Suzuki M, Carlson KM, Marchuk DA, Rockman HA (2002) Genetic modifier loci affecting survival and cardiac function in murine dilated cardiomyopathy. Circulation 105:1824–1829

    Article  PubMed  CAS  Google Scholar 

  284. Szenczi O, Kemecsei P, Holthuijsen MF, van Riel NA, van der Vusse GJ, Pacher P, Szabo C, Kollai M, Ligeti L, Ivanics T (2005) Poly(ADP-ribose) polymerase regulates myocardial calcium handling in doxorubicin-induced heart failure. Biochem Pharmacol 69:725–732. doi:10.1016/j.bcp.2004.11.023

    Article  PubMed  CAS  Google Scholar 

  285. Takahashi S, Denvir MA, Harder L, Miller DJ, Cobbe SM, Kawakami M, MacFarlane NG, Okabe E (1998) Effects of in vitro and in vivo exposure to doxorubicin (adriamycin) on caffeine-induced Ca2+ release from sarcoplasmic reticulum and contractile protein function in ‘chemically-skinned’ rabbit ventricular trabeculae. Jpn J Pharmacol 76:405–413

    Article  PubMed  CAS  Google Scholar 

  286. Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA (2000) Transgenic overexpression of constitutively active protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res 86:1218–1223

    Article  PubMed  CAS  Google Scholar 

  287. Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–352. doi:10.1016/j.pcad.2006.10.002

    Article  PubMed  CAS  Google Scholar 

  288. Takemura G, Miyata S, Kawase Y, Okada H, Maruyama R, Fujiwara H (2006) Autophagic degeneration and death of cardiomyocytes in heart failure. Autophagy 2:212–214

    PubMed  CAS  Google Scholar 

  289. Takenaka H, Kihara Y, Iwanaga Y, Onozawa Y, Toyokuni S, Kita T (2006) Angiotensin II, oxidative stress, and extracellular matrix degradation during transition to LV failure in rats with hypertension. J Mol Cell Cardiol 41:989–997. doi:10.1016/j.yjmcc.2006.07.019

    Article  PubMed  CAS  Google Scholar 

  290. Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222. doi:10.1038/nm1175

    Article  PubMed  CAS  Google Scholar 

  291. Taniyama Y, Walsh K (2002) Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. J Mol Cell Cardiol 34:1241–1247

    Article  PubMed  CAS  Google Scholar 

  292. Teerlink JR, Pfeffer JM, Pfeffer MA (1994) Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circ Res 75:105–113

    Article  PubMed  CAS  Google Scholar 

  293. Terrand J, Xu B, Morrissy S, Dinh TN, Williams S, Chen QM (2011) p21(WAF1/Cip1/Sdi1) knockout mice respond to doxorubicin with reduced cardiotoxicity. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2011.08.024

    PubMed  Google Scholar 

  294. Toischer K, Rokita AG, Unsold B, Zhu W, Kararigas G, Sossalla S, Reuter SP, Becker A, Teucher N, Seidler T, Grebe C, Preuss L, Gupta SN, Schmidt K, Lehnart SE, Kruger M, Linke WA, Backs J, Regitz-Zagrosek V, Schafer K, Field LJ, Maier LS, Hasenfuss G (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122:993–1003. doi:10.1161/CIRCULATIONAHA.110.943431

    Article  PubMed  Google Scholar 

  295. Tomlinson KC, Gardiner SM, Hebden RA, Bennett T (1992) Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 44:103–150

    PubMed  CAS  Google Scholar 

  296. Towbin JA, Bowles NE (2002) The failing heart. Nature 415:227–233. doi:10.1038/415227a

    Article  PubMed  CAS  Google Scholar 

  297. Tsuji T, Del Monte F, Yoshikawa Y, Abe T, Shimizu J, Nakajima-Takenaka C, Taniguchi S, Hajjar RJ, Takaki M (2009) Rescue of Ca2+ overload-induced left ventricular dysfunction by targeted ablation of phospholamban. Am J Physiol Heart Circ Physiol 296:H310–317. doi:10.1152/ajpheart.00975.2008

    Article  PubMed  CAS  Google Scholar 

  298. Ungerer M, Parruti G, Bohm M, Puzicha M, DeBlasi A, Erdmann E, Lohse MJ (1994) Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. Circ Res 74:206–213

    Article  PubMed  CAS  Google Scholar 

  299. Usui S, Yao A, Hatano M, Kohmoto O, Takahashi T, Nagai R, Kinugawa K (2006) Upregulated neurohumoral factors are associated with left ventricular remodeling and poor prognosis in rats with monocrotaline-induced pulmonary arterial hypertension. Circ J 70:1208–1215

    Article  PubMed  CAS  Google Scholar 

  300. Van den Berg DT, de Kloet ER, de Jong W (1994) Central effects of mineralocorticoid antagonist RU-28318 on blood pressure of DOCA-salt hypertensive rats. Am J Physiol 267:E927–E933

    PubMed  Google Scholar 

  301. Van den Bergh A, Flameng W, Herijgers P (2006) Type II diabetic mice exhibit contractile dysfunction but maintain cardiac output by favourable loading conditions. Eur J Heart Fail 8:777–783. doi:10.1016/j.ejheart.2006.03.001

    Article  PubMed  CAS  Google Scholar 

  302. van den Meiracker AH (2002) Endothelins and venous tone in DOCA-salt hypertension. J Hypertens 20:587–589

    Article  PubMed  Google Scholar 

  303. Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95. doi:10.1038/1765

    Article  PubMed  CAS  Google Scholar 

  304. Wakasaki H, Koya D, Schoen FJ, Jirousek MR, Ways DK, Hoit BD, Walsh RA, King GL (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 94:9320–9325

    Article  PubMed  CAS  Google Scholar 

  305. Wakisaka Y, Niwano S, Niwano H, Saito J, Yoshida T, Hirasawa S, Kawada H, Izumi T (2004) Structural and electrical ventricular remodeling in rat acute myocarditis and subsequent heart failure. Cardiovasc Res 63:689–699. doi:10.1016/j.cardiores.2004.04.020

    Article  PubMed  CAS  Google Scholar 

  306. Wang QD, Bohlooly YM, Sjoquist PO (2004) Murine models for the study of congestive heart failure: Implications for understanding molecular mechanisms and for drug discovery. J Pharmacol Toxicol Methods 50:163–174. doi:10.1016/j.vascn.2004.05.005

    Article  PubMed  CAS  Google Scholar 

  307. Wang X, Ren B, Liu S, Sentex E, Tappia PS, Dhalla NS (2003) Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol 94:752–763. doi:10.1152/japplphysiol.00248.200294/2/752

    PubMed  CAS  Google Scholar 

  308. Wang X, Sentex E, Saini HK, Chapman D, Dhalla NS (2005) Upregulation of beta-adrenergic receptors in heart failure due to volume overload. Am J Physiol Heart Circ Physiol 289:H151–159. doi:10.1152/ajpheart.00066.2005

    Article  PubMed  CAS  Google Scholar 

  309. Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, Litwin SE, Schunkert H, Benedict CR, Lorell BH (1994) Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 90:1410–1422

    Article  PubMed  CAS  Google Scholar 

  310. Werchan PM, Summer WR, Gerdes AM, McDonough KH (1989) Right ventricular performance after monocrotaline-induced pulmonary hypertension. Am J Physiol 256:H1328–H1336

    PubMed  CAS  Google Scholar 

  311. West MB, Rokosh G, Obal D, Velayutham M, Xuan YT, Hill BG, Keith RJ, Schrader J, Guo Y, Conklin DJ, Prabhu SD, Zweier JL, Bolli R, Bhatnagar A (2008) Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation 118:1970–1978. doi:10.1161/CIRCULATIONAHA.108.791533

    Article  PubMed  CAS  Google Scholar 

  312. Wettschureck N, Rutten H, Zywietz A, Gehring D, Wilkie TM, Chen J, Chien KR, Offermanns S (2001) Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat Med 7:1236–1240. doi:10.1038/nm1101-1236

    Article  PubMed  CAS  Google Scholar 

  313. Wilson KM, Sumners C, Hathaway S, Fregly MJ (1986) Mineralocorticoids modulate central angiotensin II receptors in rats. Brain Res 382:87–96

    Article  PubMed  CAS  Google Scholar 

  314. Wood P, Piran S, Liu PP (2011) Diastolic heart failure: progress, treatment challenges, and prevention. Can J Cardiol 27:302–310. doi:10.1016/j.cjca.2011.02.008

    Article  PubMed  Google Scholar 

  315. Wu JC, Nasseri BA, Bloch KD, Picard MH, Scherrer-Crosbie M (2003) Influence of sex on ventricular remodeling after myocardial infarction in mice. J Am Soc Echocardiogr 16:1158–1162. doi:10.1067/S0894-7317(03)00648-5

    Article  PubMed  Google Scholar 

  316. Xiao CY, Chen M, Zsengeller Z, Li H, Kiss L, Kollai M, Szabo C (2005) Poly(ADP-Ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J Pharmacol Exp Ther 312:891–898. doi:10.1124/jpet.104.077164

    Article  PubMed  CAS  Google Scholar 

  317. Xin HB, Senbonmatsu T, Cheng DS, Wang YX, Copello JA, Ji GJ, Collier ML, Deng KY, Jeyakumar LH, Magnuson MA, Inagami T, Kotlikoff MI, Fleischer S (2002) Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature 416:334–338. doi:10.1038/416334a

    Article  PubMed  CAS  Google Scholar 

  318. Yamada T, Matsumori A, Wang WZ, Ohashi N, Shiota K, Sasayama S (1999) Apoptosis in congestive heart failure induced by viral myocarditis in mice. Heart Vessels 14:29–37

    Article  PubMed  CAS  Google Scholar 

  319. Yamori Y (1991) Overview: studies on spontaneous hypertension-development from animal models toward man. Clin Exp Hypertens A 13:631–644

    Article  PubMed  CAS  Google Scholar 

  320. Yang S, Su L, Wang Z, Liu Z, Kang Y, Lei J (2011) Comparative study on repairing rabbit radius segmental defects with two different proportions of chitosan combined with allogeneic morselized bone. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 25:877–883

    PubMed  Google Scholar 

  321. Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, Suetsugu M, Hisaoka T, Obayashi M, Ohkusa T, Matsuzaki M (2003) FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107:477–484

    Google Scholar 

  322. Yoo B, Lemaire A, Mangmool S, Wolf MJ, Curcio A, Mao L, Rockman HA (2009) Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 297:H1377–1386. doi:10.1152/ajpheart.00504.2009

    Article  PubMed  CAS  Google Scholar 

  323. Yoshida M, Ohkusa T, Nakashima T, Takanari H, Yano M, Takemura G, Honjo H, Kodama I, Mizukami Y, Matsuzaki M (2011) Alterations in adhesion junction precede gap junction remodelling during the development of heart failure in cardiomyopathic hamsters. Cardiovasc Res 92:95–105. doi:10.1093/cvr/cvr182

    Article  PubMed  CAS  Google Scholar 

  324. Zbinden G, Bagdon RE (1963) Isoproterenol-induced heart necrosis, an experimental model for the study of Angina Pectoris and Myocardial Infarct. Rev Can Biol 22:257–263

    PubMed  CAS  Google Scholar 

  325. Zbinden G, Moe RA (1969) Pharmacological studies on heart muscle lesions induced by isoproterenol. Ann N Y Acad Sci 156:294–308

    Article  PubMed  CAS  Google Scholar 

  326. Zhou YY, Song LS, Lakatta EG, Xiao RP, Cheng H (1999) Constitutive beta2-adrenergic signalling enhances sarcoplasmic reticulum Ca2+ cycling to augment contraction in mouse heart. J Physiol 521(Pt 2):351–361

    Article  PubMed  CAS  Google Scholar 

  327. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 105:1387–1393

    Article  PubMed  Google Scholar 

  328. Zisa D, Shabbir A, Mastri M, Suzuki G, Lee T (2009) Intramuscular VEGF repairs the failing heart: role of host-derived growth factors and mobilization of progenitor cells. Am J Physiol Regul Integr Comp Physiol 297:R1503–1515. doi:10.1152/ajpregu.00227.2009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the European Commission (FP7-Health-2010; MEDIA-261409). Inês Falcão-Pires, Ana Luisa Pires and Carmen Brás-Silva are supported by an individual grants from Portuguese Foundation for Science and Technology (SFRH/BPD/66176/2009, SFRH/BD/19544/2004 as well as Ciência 2008 and PTDC/SAU-FCT/100442/2008, COMPETE, FEDER, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Leite-Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, A.C., Falcão-Pires, I., Pires, A.L. et al. Rodent models of heart failure: an updated review. Heart Fail Rev 18, 219–249 (2013). https://doi.org/10.1007/s10741-012-9305-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9305-3

Keywords

Navigation