Skip to main content
Log in

An introduction to the metabolic determinants of anthracycline cardiotoxicity

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Antitumor therapy with doxorubicin and other anthracyclines is limited by the possible development of cardiomyopathy upon chronic administration. Several lines of evidence suggest that a close link exists between cardiotoxicity and the amount of anthracycline that accumulates in the heart and then undergoes one- or two- electron reduction to toxic metabolites or by-products. Alternative metabolic pathways lead to an oxidative degradation of anthracyclines, possibly counteracting anthracycline accumulation and reductive bioactivation; unfortunately, however, the actual role of anthracycline oxidation is only partially characterized. Here, we briefly review the biochemical foundations of reductive versus oxidative anthracycline metabolism. We show that multiple links exist between one pathway of toxic biactivation and another, limiting the search and clinical development of “better anthracyclines” that retain antitumor activity but induce less cardiotoxicity than the available analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meissner, K., Sperker, B., Karsten, C, Zu Schwabedissen, H. M., Seeland, U., Bohm, M., Bien, S., Dazert, P., Kunert-Keil, C., Vogelgesang, S., Warzok, R., Siegmund, W., Cascorbi, I., Wendt, M., & Kroemer, H. K. (2002). Expression and localization of P-glycoprotein in human heart: Effects of cardiomyopathy. The Journal of Histochemistry and Cytochemistry, 50, 1351–1356.

    PubMed  CAS  Google Scholar 

  2. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.

    Article  PubMed  CAS  Google Scholar 

  3. Cusack, B. J., Young, S. P., Driskell, J., & Olson, R. D. (1993). Doxorubicin and doxorubicinol pharmacokinetics and tissue concentrations following bolus injection and continuous infusion of doxorubicin in the rabbit. Cancer Chemotherapy and Pharmacology, 32, 53–58.

    Article  PubMed  CAS  Google Scholar 

  4. Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone dependent and independent mechanisms. Methods in Enzymology, 378, 340–361.

    Article  PubMed  CAS  Google Scholar 

  5. Menna, P., Salvatorelli, E., Giampietro, R., Liberi, G., Teodori, G., Calafiore, A. M., & Minotti, G. (2002). Doxorubicin-dependent reduction of ferrylmyoglobin and inhibition of lipid peroxidation: Implications for cardiotoxicity of anticancer anthracyclines. Chemical Research in Toxicology, 15, 1179–1189.

    Article  PubMed  CAS  Google Scholar 

  6. Cartoni, A., Menna, P., Salvatorelli, E., Braghiroli, D., Giampietro, R., Animati, F., Urbani, A., Del Boccio, P., & Minotti, G. (2004). Oxidative degradation of cardiotoxic anticancer anthracyclines to phthalic acids : Novel function for ferrylmyoglobin? The Journal of Biological Chemistry, 279, 5088–5099.

    Article  PubMed  CAS  Google Scholar 

  7. Cairo, G., & Pietrangelo, A. (2000). Iron regulatory proteins in pathobiology. The Biochemical Journal, 352, 241–250.

    Article  PubMed  CAS  Google Scholar 

  8. Galy, B., Ferring, D., Benesova, M., Benes, V., & Hentze, M. W. (2004). Targeted mutagenesis of the murine IRP1 and IRP2 genes reveals context-dependent RNA processing differences in vivo. RNA, 10, 1019–1025.

    Article  PubMed  CAS  Google Scholar 

  9. Iwai, K., Drake, S. K., Wehr, N. B., Weissman, A. M., LaVaute, T., Minato, N., Klausner, R. D., Levine, R. L., & Rouault, T. A. (1998). Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: Implications for degradation of oxidized proteins. Proceedings of the National Academy of Sciences of the United States of America, 95, 4924–4928.

    Article  PubMed  CAS  Google Scholar 

  10. Minotti, G., Ronchi, R., Salvatorelli, E., Menna, P., & Cairo, G. (2001). Doxorubicin irreversibly inactivates Iron Regulatory Proteins 1 and 2 in cardiomyocytes : Evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Research, 61, 8422–8428.

    PubMed  CAS  Google Scholar 

  11. Corna, G., Santambrogio, P., Minotti, G., & Cairo, G. (2004). Doxorubicin paradoxically protects cardiomyocytes against iron-mediated toxicity: Role of reactive oxygen species and ferritin. The Journal of Biological Chemistry, 279, 13738–13745.

    Article  PubMed  CAS  Google Scholar 

  12. Cairo, G., Recalcati, S., Pietrangelo, A., & Minotti, G. (2002). The iron regulatory proteins: Targets of free radicals and modulators of oxidative damage. Free Radical Biology & Medicine, 32, 1237–1243.

    Article  CAS  Google Scholar 

  13. Cairo, G., Ronchi, R., Recalcati, S., & Minotti, G. (2003). Nitric oxide and peroxynitrite activate the Iron Regulatory Protein-1 of J774A.1 macrophages by direct disassembly of the Fe-S cluster of cytoplasmic aconitase. Biochemistry, 41, 7435–7442.

    Article  CAS  Google Scholar 

  14. Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.

    Article  PubMed  CAS  Google Scholar 

  15. Minotti, G., Recalcati, S., Mordente, A., Liberi, G., Calafiore, A. M., Mancuso, C., Preziosi, P., & Cairo, G. (1998). The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB Journals, 12, 541–552.

    CAS  Google Scholar 

  16. Kwok, J. C., & Richardson, D. R. (2002). Unexpected anthracycline-mediated alterations in iron-regulatory protein-RNA-binding activity: The iron and copper complexes of anthracyclines decrease RNA-binding activity. Molecular Pharmacology, 62, 888–900.

    Article  PubMed  CAS  Google Scholar 

  17. Kwok, J. C., & Richardson, D. R. (2004). Examination of the mechanism(s) involved in doxorubicin-mediated iron accumulation in ferritin: studies using metabolic inhibitors, protein synthesis inhibitors, and lysosomotropic agents. Molecular Pharmacology, 65, 181–195.

    Article  PubMed  CAS  Google Scholar 

  18. Cairo, G., Bernuzzi, F., & Recalcati, S. (2006). A precious metal: Iron, an essential nutrient for all cells. Genes and Nutrition, 1, 25–40.

    CAS  Google Scholar 

  19. Cusack, B. J., Gambliel, H., Musser, B., Hadjokas, N., Shadle, S. E., Charlier, H., & Olson, R. D. (2006). Prevention of chronic anthracycline cardiotoxicity in the adult Fischer 344 rat by dexrazoxane and effects on iron metabolism. Cancer Chemotherapy and Pharmacology, 58, 517–526.

    Article  PubMed  CAS  Google Scholar 

  20. Sacco, G., Giampietro, R., Salvatorelli, E., Menna, P., Bertani, N., Graiani, G., Animati, F., Goso, C., Maggi, C. A., Manzini, S., & Minotti, G. (2003). Chronic cardiotoxicity of anticancer anthracyclines in the rat: Role of secondary alcohol metabolites and reduced toxicity by a novel anthracycline with impaired metabolite formation and reactivity. British Journal of Pharmacology, 139, 641–651.

    Article  PubMed  CAS  Google Scholar 

  21. Corna, R., Galy, B., & Cairo, G. (2006). IRP1-independent alterations of cardiac iron metabolism in doxorubicin-treated mice. Journal of Molecular Medicine, 84, 551–560.

    Article  PubMed  CAS  Google Scholar 

  22. Minotti, G., Cairo, G., & Monti, E. (1999). Role of iron in anthracycline cardiotoxicity: New tunes for an old song? FASEB Journals, 13, 199–212.

    CAS  Google Scholar 

  23. Galy, B., Ferring, D., & Hentze, M. W. (2005). Generation of conditional alleles of the murine Iron Regulatory Protein (IRP)-1 and -2 genes. Genesis, 43, 181–188.

    Article  PubMed  CAS  Google Scholar 

  24. Ladas, E. J., Jacobson, J. S., Kennedy, D. D., Teel, K., Fleischauer, A., & Kelly, K. M. (2004). Antioxidants and cancer therapy: a systematic review. Journal of Clinical Oncology, 22, 517–528.

    Article  PubMed  CAS  Google Scholar 

  25. Sokolove, P. M. (1994). Interactions of adriamycin aglycones with mitochondria may mediate adriamycin cardiotoxicity. International Journal of Biochemistry, 26, 1341–1350.

    Article  PubMed  CAS  Google Scholar 

  26. Gille, L., & Nohl, H. (1997). Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radical Biology & Medicine, 23, 775–782.

    Article  CAS  Google Scholar 

  27. Olson, R. D., & Mushlin, P. S. (1990). Doxorubicin cardiotoxicity: Analysis of prevailing hypotheses. FASEB Journals, 4, 3076–3086.

    CAS  Google Scholar 

  28. Olson, R. D., Li, X., Palade, P., Shadle, S. E., Mushlin, P. S., Gambliel, H. A., Fill, M., Boucek, R. J. Jr, & Cusack, B. J. (2000). Sarcoplasmic reticulum calcium release is stimulated and inhibited by daunorubicin and daunorubicinol. Toxicology and Applied Pharmacology, 169, 168–176.

    Article  PubMed  CAS  Google Scholar 

  29. Gambliel, H. A., Burke, B. E., Cusack, B. J., Walsh, G. M., Zhang, Y. L., Mushlin, P. S., & Olson, R. D. (2002). Doxorubicin and C-13 deoxydoxorubicin effects on ryanodine receptor gene expression. Biochemical and Biophysical Research Communications, 291, 433–438.

    Article  PubMed  CAS  Google Scholar 

  30. Burke, B. E., Gambliel, H., Olson, R. D., Bauer, F. K., & Cusack, B. J. (2000). Prevention by dexrazoxane of down-regulation of ryanodine receptor gene expression in anthracycline cardiomyopathy in the rat. British Journal of Pharmacology, 131, 1–4.

    Article  PubMed  CAS  Google Scholar 

  31. Menna, P., Minotti, G., & Salvatorelli, E. (2007). In vitro modelling of the structure-activity determinants of anthracycline cardiotoxicity. Cell Biology and Toxicology, 23, 49–62.

    Article  PubMed  CAS  Google Scholar 

  32. Fiedler, W., Tchen, N., Bloch, J., Fargeot, P., Sorio, R., Vermorken, J. B., Collette, L., Lacombe, D., & Twelves, C. (2006). A study from the EORTC new drug development group: Open label phase II study of sabarubicin (MEN-10755) in patients with progressive hormone refractory prostate cancer. European Journal of Cancer, 42, 200–204.

    Article  PubMed  CAS  Google Scholar 

  33. Salvatorelli, E., Guarnieri, S., Menna, P., Liberi, G., Calafiore, A., Mariggio’, M. A., Mordente, A., Gianni, L., & Minotti, G. (2006). Defective one or two electron reduction of the anticancer anthracycline epirubicin in human heart: Relative importance of vesicular sequestration and impaired efficiency of electron addition. The Journal of Biological Chemistry, 281, 10990–11001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Associazione Italiana Ricerca sul Cancro and Ministero dell’ Universita’ e Ricerca Scientifica e Tecnologica (MIUR) (Center of Excellence on Aging at the University of Chieti).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Minotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menna, P., Recalcati, S., Cairo, G. et al. An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc Toxicol 7, 80–85 (2007). https://doi.org/10.1007/s12012-007-0011-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-0011-7

Keywords

Navigation