Skip to main content
Log in

Apoptosis: a potentially reversible, meta-stable state of the heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a major problem worldwide, but its pathogenesis remains unclear. Apoptosis or programmed cell death is thought to play a crucial role in its progression. While primarily thought to be a method for cardiomyocyte loss, provocative newer data suggest that the apoptotic cell is not inevitably committed to death. Apoptosis might be one of the meta-stable transition states, like the hibernating myocardium, that may be reversible with appropriate therapy. The cell with activated apoptotic machinery is likely to contribute to reversible systolic dysfunction while awaiting its ultimate fate. We will briefly review some of the data to support such a concept. If proven correct, this may change our future preventive and therapeutic strategies. Methods to reverse apoptosis, thus might help restore systolic function and reverse remodeling or even prevent progression of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Heart Association: Heart Disease and Stroke Statistics (2007) Circulation 115:e69–e171

  2. Narula J, Young JB (2005) Pathogenesis of heart failure: the penultimate survival instinct. Heart Fail Clin 1:ix–x

    Google Scholar 

  3. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Sonnenblick E (1995) The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol 27:291–305

    Article  PubMed  CAS  Google Scholar 

  4. Pouleur HG, Konstam MA, Udelson JE, Rousseau MF (1993) Changes in ventricular volume, wall thickness and wall stress during progression of left ventricular dysfunction. The SOLVD investigators. J Am Coll Cardiol 22:43A–48A

    Article  PubMed  CAS  Google Scholar 

  5. Chandrashekhar Y, Narula J (2003) Death hath a thousand doors to let out life. Circ Res 92:710–714

    Article  PubMed  CAS  Google Scholar 

  6. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM et al (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504

    PubMed  CAS  Google Scholar 

  7. Hayakawa K, Takemura G, Kanoh M, LiY, Koda M, Kawase Y et al (2003) Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodelling and dysfunctionat the chronic stage. Circulation 108:104–109

    Article  PubMed  Google Scholar 

  8. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I (2004) Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 43:295–301

    Article  PubMed  CAS  Google Scholar 

  9. Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189

    Article  PubMed  CAS  Google Scholar 

  10. Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Eng J Med 336:1131–1141

    Article  CAS  Google Scholar 

  11. Garg S, Narula J, Chandrashekhar Y (2005) Apoptosis and heart failure: clinical relevance and therapeutic target. J Mol Cell Cardiol 38:73–79

    Article  PubMed  CAS  Google Scholar 

  12. Anversa P (2000) Myocyte death in the pathological heart. Circ Res 86:121–124

    PubMed  CAS  Google Scholar 

  13. Narula J, Arbustini E, Chandrashekhar Y, Schwaiger M (2001) Apoptosis and the systolic dysfunction in congestive heart failure: story of apoptosis interruptus and Zombie myocytes. Cardiol Clin 19:113–126

    Article  PubMed  CAS  Google Scholar 

  14. Narula J, Pandey P, Arbustini E et al (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96:8144–8149

    Article  PubMed  CAS  Google Scholar 

  15. Reed JC, Paternostro G (1999) Postmitochondrial regulation of apoptosis during heart failure. Proc Natl Acad Sci USA 996:7614–7616

    Article  Google Scholar 

  16. Narula J, Haider N, Arbustini E, Chandrashekhar Y (2006) Mechanisms of disease: apoptosis in heart failure—seeing hope in death. Nat Clin Pract Cardiovasc Med 3:681–688

    Article  PubMed  CAS  Google Scholar 

  17. Haider N, Narula N, Narula J (2002) Apoptosis in heart failure represents programmed cell survival, not death, of cardiomyocytes and likelihood of reverse remodelling. J Card Fail 8(6 Suppl):S512–S517

    Article  PubMed  Google Scholar 

  18. Kanoh M. Takemura G. Miaao J. Hayakawa Y, Aoyama T, Nishigaki K, Noda T, Fujiwara T, Fukuda K, Mitatoguchi S, Fujiwara H (1999) Significance of myocytes with DNA in situ nick-end labeling (TUNEL) in hearts with dilated cardiomyopathy: not apoptosis but DNA repair. Circulation 99:2757–2764

    Google Scholar 

  19. Morissette MR, Rosenzweig A (2005) Targeting survival signaling in heart failure. Curr Opin Pharmacol 5:165–170

    Article  PubMed  CAS  Google Scholar 

  20. Narula N, Narula J, Zhang PJ et al (2005) Is the myofibrillarlytic myocyte a forme fruste apoptotic myocyte? Ann Thorac Surg 79:1333–1337

    Article  PubMed  Google Scholar 

  21. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ (2002) Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA 99:6252–6256

    Article  PubMed  CAS  Google Scholar 

  22. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    Article  PubMed  CAS  Google Scholar 

  23. Grazette LP, Boecker W, Matsui T et al (2004) Inhibition of ErbB2 causes mitochondrial dysfunction in cardio-myocytes. Implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol 44:2231–2238

    Article  PubMed  CAS  Google Scholar 

  24. Crone SA, Zhao YY, Fan L et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465

    Article  PubMed  CAS  Google Scholar 

  25. Matsui T, Tao J, del Monte F et al (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104:330–335

    PubMed  CAS  Google Scholar 

  26. Bartling B, Milting H, Schumann H et al (1999) Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation 100:216–223

    CAS  Google Scholar 

  27. Arbustini E, Norbini P, Narula J et al (2001) Apoptosis in heart failure: abrogation of cytochrome c release after ventricular unloading by LVAD (abstr). Med Pathol

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Chandrashekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masri, C., Chandrashekhar, Y. Apoptosis: a potentially reversible, meta-stable state of the heart. Heart Fail Rev 13, 175–179 (2008). https://doi.org/10.1007/s10741-007-9069-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9069-3

Keywords

Navigation