Skip to main content
Log in

Effect of Oxygen–Glucose Deprivation of Microglia-Derived Exosomes on Hippocampal Neurons: A Study on miR-124 and Inflammatory Cytokines

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Stroke is a cerebrovascular disease that threatens human health. Developing safe and effective drugs and finding therapeutic targets has become an urgent scientific problem. The aim of this study was to investigate the effect of oxygen–glucose deprivation of the microglia-derived exosome on hippocampal neurons and its relationship to miR-124 in the exosome. We incubated hippocampal neurons with exosomes secreted by oxygen–glucose deprivation/ reoxygenation (OGD/R) microglia. The levels of glutamic acid (GLU) and gamma-aminobutyric acid (GABA) in the culture supernatant were detected by ELISA. CCK-8 was used to measure neuronal survival rates. The mRNA levels of TNF-α and IL-6 were detected by RT-qPCR to evaluate the effect of exosomes on neurons. RT-qPCR was then used to detect miR-124 in microglia and their secreted exosomes. Finally, potential targets of miR-124 were analyzed through database retrieval, gene detection with dual luciferase reporters, and western blotting experiments. The results showed that the contents of GLU, TNF-α and IL-6 mRNA increased in the supernatant of cultured hippocampal neurons, the content of GABA decreased, and the survival rate of neurons decreased. Oxygen–glucose deprivation increases miR-124 levels in microglia and their released exosomes. miR-124 acts as a target gene on cytokine signaling suppressor molecule 1(SOCS1), while miR-124 inhibitors reduce the expression of TNF-α and IL-6 mRNA in neurons. These results suggest that oxygen- and glucose-deprived microglia regulate inflammatory cytokines leading to reduced neuronal survival, which may be achieved by miR-124 using SOCS1 as a potential target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

References

  • An Z, Yin Y, Zhang L et al (2022) Effect of Ulinastatin Combined with Xingnaojing Injection on Severe Traumatic Craniocerebral Injury and Its Influence on Oxidative Stress Response and Inflammatory Response. Biomed Res Int 2022:2621732

    Article  PubMed  PubMed Central  Google Scholar 

  • Cetiner M, Eskut N, Akdag G et al (2023) Retrospective Evaluation of the Results of Low-Dose Intravenous Thrombolytic Therapy in Acute Ischemic Stroke. Sisli Etfal Hastan Tip Bul 57:359–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen M, Zhang Q, Liu H et al (2021) Influence of nimodipine combined with ulinastatin on neurological function and inflammatory reaction in patients with cerebral vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg 210:106981

    Article  PubMed  Google Scholar 

  • Chinen T, Kobayashi T, Ogata H et al (2006) Suppressor of cytokine signaling-1 regulates inflammatory bowel disease in which both IFNgamma and IL-4 are involved. Gastroenterology 130:373–388

    Article  CAS  PubMed  Google Scholar 

  • Cui P, Lu W, Wang J et al (2023) Microglia/macrophages require vitamin D signaling to restrain neuroinflammation and brain injury in a murine ischemic stroke model. J Neuroinflammation 20:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding W, Gu Q, Liu M et al (2023) Astrocytes-derived exosomes pre-treated by berberine inhibit neuroinflammation after stroke via miR-182-5p/Rac1 pathway. Int Immunopharmacol 118:110047

    Article  CAS  PubMed  Google Scholar 

  • Egan PJ, Lawlor KE, Alexander WS et al (2003) Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J Clin Invest 111:915–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faizy TD, Mlynash M, Marks MP et al (2022) Intravenous tPA (Tissue-Type Plasminogen Activator) Correlates With Favorable Venous Outflow Profiles in Acute Ischemic Stroke. Stroke 53:3145–3152

    Article  CAS  PubMed  Google Scholar 

  • Hajinejad M, Ebrahimzadeh MH, Ebrahimzadeh-Bideskan A et al (2023) Exosomes and Nano-SDF Scaffold as a Cell-Free-Based Treatment Strategy Improve Traumatic Brain Injury Mechanisms by Decreasing Oxidative Stress, Neuroinflammation, and Increasing Neurogenesis. Stem Cell Rev Rep 19:1001–1018

    Article  CAS  PubMed  Google Scholar 

  • Hartmann H, Hoehne K, Rist E et al (2015) miR-124 disinhibits neurite outgrowth in an inflammatory environment. Cell Tissue Res 362:9–20

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao L, Fu H et al (2015) Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-kappaB in SD rat hippocampal astrocyte. Biochem Biophys Res Commun 458:763–770

    Article  CAS  PubMed  Google Scholar 

  • Lian L, Zhang Y, Liu L et al (2020) Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia. Front Mol Neurosci 13:612439

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang M, Liu H et al (2021) Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp Neurol 341:113700

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Shen Y, Xiao Y et al (2022) Increased miR-124-3p alleviates type 2 inflammatory response in allergic rhinitis via IL-4Ralpha. Inflamm Res 71:1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Li J, Huang L et al (2022) Safety and efficacy of a new modified intravenous recombinant tissue plasminogen activator (rt-PA) regimen in Chinese patients with acute ischemic stroke: A descriptive retrospective cohort study with subgroup-analysis of different rt-PA dose. J Clin Neurosci 101:244–251

    Article  CAS  PubMed  Google Scholar 

  • Madonna S, Scarponi C, De Pita O et al (2008) Suppressor of cytokine signaling 1 inhibits IFN-gamma inflammatory signaling in human keratinocytes by sustaining ERK1/2 activation. FASEB J 22:3287–3297

    Article  CAS  PubMed  Google Scholar 

  • Maier B, Tsai AS, Einhaus JF et al (2023) Neuroimaging is the new “spatial omic”: multi-omic approaches to neuro-inflammation and immuno-thrombosis in acute ischemic stroke. Semin Immunopathol 45:125–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Mavroudis I, Balmus IM, Ciobica A, et al (2023) The Role of Microglial Exosomes and miR-124–3p in Neuroinflammation and Neuronal Repair after Traumatic Brain Injury. Life (Basel) 13(9):1924. https://doi.org/10.3390/life13091924

  • Nagy EE, Frigy A, Szasz JA et al (2020) Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Exp Ther Med 20:2510–2523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neki H, Katano T, Maeda T et al (2023) Intraarterial urokinase for thrombus migration after mechanical thrombectomy for large vessel ischemic stroke. Interv Neuroradiol 29:88–93

    Article  PubMed  Google Scholar 

  • Pan R, Xie Y, Fang W et al (2022) USP20 mitigates ischemic stroke in mice by suppressing neuroinflammation and neuron death via regulating PTEN signal. Int Immunopharmacol 103:107840

    Article  CAS  PubMed  Google Scholar 

  • Pu Z, Xia S, Shao P, et al (2022) Regulation of Microglia-Activation-Mediated Neuroinflammation to Ameliorate Ischemia-Reperfusion Injury via the STAT5-NF-kappaB Pathway in Ischemic Stroke. Brain Sci 12(9):1153. https://doi.org/10.3390/brainsci12091153

  • Shikimi T, Himeno Y, Shigeno K et al (1994) Relationships between ulinastatin and alpha-1-microglobulin in human urine. Clin Chim Acta 227:195–200

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Zhang Y, Yuan H et al (2022) Efficacy of Xuebijing Combined with Ulinastatin in the Treatment of Traumatic Sepsis and Effects on Inflammatory Factors and Immune Function in Patients. Front Surg 9:899753

    Article  PubMed  PubMed Central  Google Scholar 

  • Su W, Lu H, Li Q, et al (2023) Characteristics of cognition impairment in patients after stroke based on the Wechsler Adult Intelligence Scale-Revised in China. Appl Neuropsychol Adult 1–8. https://doi.org/10.1080/23279095.2023.2205023

  • Sun X, Song W, Teng L et al (2023) MiRNA 24–3p-rich exosomes functionalized DEGMA-modified hyaluronic acid hydrogels for corneal epithelial healing. Bioact Mater 25:640–656

    CAS  PubMed  Google Scholar 

  • Tajiri K, Imanaka-Yoshida K, Matsubara A et al (2012) Suppressor of cytokine signaling 1 DNA administration inhibits inflammatory and pathogenic responses in autoimmune myocarditis. J Immunol 189:2043–2053

    Article  CAS  PubMed  Google Scholar 

  • Teran-Cabanillas E, Montalvo-Corral M, Silva-Campa E et al (2014) Production of interferon alpha and beta, pro-inflammatory cytokines and the expression of suppressor of cytokine signaling (SOCS) in obese subjects infected with influenza A/H1N1. Clin Nutr 33:922–926

    Article  CAS  PubMed  Google Scholar 

  • van der Ende NAM, Roozenbeek B, Smagge LEM et al (2023) Safety and Efficacy of Dual Thrombolytic Therapy With Mutant Prourokinase and Small Bolus Alteplase for Ischemic Stroke: A Randomized Clinical Trial. JAMA Neurol 80:714–722

    Article  PubMed  Google Scholar 

  • Wang Y, Leak RK, Cao G (2022) Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci 16:980722

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei YJ, Wang JF, Cheng F et al (2021) miR-124-3p targeted SIRT1 to regulate cell apoptosis, inflammatory response, and oxidative stress in acute myocardial infarction in rats via modulation of the FGF21/CREB/PGC1alpha pathway. J Physiol Biochem 77:577–587

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Gao S (2023) Commentary: Safety and efficacy of low-cost alternative urokinase in acute ischemic stroke: A systematic review and meta-analysis. J Clin Neurosci 115:169

    Article  CAS  PubMed  Google Scholar 

  • Yu A, Zhang T, Duan H et al (2017) MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-alpha pathway in intracerebral hemorrhage. Immunol Lett 182:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Tian T, Gong SX et al (2021) Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke. Neural Regen Res 16:6–11

    Article  PubMed  Google Scholar 

  • Zhang J, Zhou R, Cao G et al (2022) Guhong Injection Prevents Ischemic Stroke-Induced Neuro-Inflammation and Neuron Loss Through Regulation of C5ar1. Front Pharmacol 13:818245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Zhu J, Chen S et al (2023) Neural Stem Cell-Derived Exosomes Improve Neurological Function in Rats with Cerebral Ischemia-Reperfusion Injury by Regulating Microglia-Mediated Inflammatory Response. J Inflamm Res 16:3079–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Jian Z, Zhong Y et al (2021) Janus Kinase Inhibition Ameliorates Ischemic Stroke Injury and Neuroinflammation Through Reducing NLRP3 Inflammasome Activation via JAK2/STAT3 Pathway Inhibition. Front Immunol 12:714943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (81660243), Guizhou Provincial Science and Technology Projects (Qiankehejichu -ZK-[2021, 2023] yiban 415, 323). And Science Innovation 2030–Brain Science and BrainInspired Intelligence Technology Major Project (2021ZD0201100, 2021ZD0201103); Department of Education of Guizhou Province(Guizhou Teaching and Technology [2023]015) .

Author information

Authors and Affiliations

Authors

Contributions

Yizhen ZHU and Guo GE conceived the research; Xue ZHAO, Baofei SUN, and Dan YANG performed the experiments; Xue ZHAO analyzed the data; Dan YANG, and Ruojing LIU contributed reagents/materials /analysis tools; Yizhen ZHU wrote the paper. All authors contributed to the discussion and revision of the manuscript.

Corresponding author

Correspondence to Guo Ge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

All contributing authors declare no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Zhao, X., Liu, R. et al. Effect of Oxygen–Glucose Deprivation of Microglia-Derived Exosomes on Hippocampal Neurons: A Study on miR-124 and Inflammatory Cytokines. J Mol Histol (2024). https://doi.org/10.1007/s10735-024-10193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10735-024-10193-6

Keywords

Navigation