Skip to main content

Advertisement

Log in

Neuroimaging is the new “spatial omic”: multi-omic approaches to neuro-inflammation and immuno-thrombosis in acute ischemic stroke

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Ischemic stroke (IS) is the leading cause of acquired disability and the second leading cause of dementia and mortality. Current treatments for IS are primarily focused on revascularization of the occluded artery. However, only 10% of patients are eligible for revascularization and 50% of revascularized patients remain disabled at 3 months. Accumulating evidence highlight the prognostic significance of the neuro- and thrombo-inflammatory response after IS. However, several randomized trials of promising immunosuppressive or immunomodulatory drugs failed to show positive results. Insufficient understanding of inter-patient variability in the cellular, functional, and spatial organization of the inflammatory response to IS likely contributed to the failure to translate preclinical findings into successful clinical trials. The inflammatory response to IS involves complex interactions between neuronal, glial, and immune cell subsets across multiple immunological compartments, including the blood-brain barrier, the meningeal lymphatic vessels, the choroid plexus, and the skull bone marrow. Here, we review the neuro- and thrombo-inflammatory responses to IS. We discuss how clinical imaging and single-cell omic technologies have refined our understanding of the spatial organization of pathobiological processes driving clinical outcomes in patients with an IS. We also introduce recent developments in machine learning statistical methods for the integration of multi-omic data (biological and radiological) to identify patient-specific inflammatory states predictive of IS clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AIS:

Acute ischemic stroke

ASL:

Arterial spin labeling

BBB:

Blood-brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

ChP:

Choroid plexus

EVT:

Endovascular therapy

FLAIR:

Fluid attenuated inversion recovery

HARM:

Hyperintense acute reperfusion marker

ICH:

Intracranial hemorrhage

IL:

Interleukin

IVT:

Intravenous thrombolysis

mLVs:

Meningeal lymphatic vessels

MS:

Multiple sclerosis

MRI:

Magnetic resonance imaging

NMOSD:

Neuromyelitis optica spectrum disorders

PET:

Positron emission tomography

SDF-1:

Stroma cell-derived factor 1

References

  1. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay P (2022) World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke 17(1):18–29

    Article  PubMed  Google Scholar 

  2. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Davalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM et al (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387(10029):1723–1731

    Article  PubMed  Google Scholar 

  3. Iadecola C, Buckwalter MS, Anrather J (2020) Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Invest 130(6):2777–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD (2019) Global brain inflammation in stroke. Lancet Neurol 18(11):1058–1066

    Article  PubMed  Google Scholar 

  5. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R (2012) The immunology of acute stroke. Nat Rev Neurol 8(7):401–410

    Article  CAS  PubMed  Google Scholar 

  6. De Meyer SF, Langhauser F, Haupeltshofer S, Kleinschnitz C, Casas AI (2022) Thromboinflammation in brain ischemia: recent updates and future perspectives. Stroke 53(5):1487–1499

    Article  PubMed  Google Scholar 

  7. Dreikorn M, Milacic Z, Pavlovic V, Meuth SG, Kleinschnitz C, Kraft P (2018) Immunotherapy of experimental and human stroke with agents approved for multiple sclerosis: a systematic review. Ther Adv Neurol Disord 11:1756286418770626

    Article  PubMed  PubMed Central  Google Scholar 

  8. Buckley MW, McGavern DB (2022) Immune dynamics in the CNS and its barriers during homeostasis and disease. Immunol Rev 306(1):58–75

    Article  CAS  PubMed  Google Scholar 

  9. Alves de Lima K, Rustenhoven J, Kipnis J (2020) Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu Rev Immunol 38:597–620

    Article  CAS  PubMed  Google Scholar 

  10. Croese T, Castellani G, Schwartz M (2021) Immune cell compartmentalization for brain surveillance and protection. Nat Immunol 22(9):1083–1092

    Article  CAS  PubMed  Google Scholar 

  11. Giladi A, Amit I (2018) Single-cell genomics: a stepping stone for future immunology discoveries. Cell 172(1–2):14–21

    Article  CAS  PubMed  Google Scholar 

  12. Medawar PB (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29(1):58–69

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, Papadopoulos Z, Kanamori M, Salvador AF, Baker W, Lemieux M, Da Mesquita S, Cugurra A, Fitzpatrick J, Sviben S, Kossina R, Bayguinov P, Townsend RR, Zhang Q et al (2021) Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184(4):1000–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Candelario-Jalil E, Dijkhuizen RM, Magnus T (2022) Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 53(5):1473–1486

    Article  CAS  PubMed  Google Scholar 

  15. Mundt S, Greter M, Flugel A, Becher B (2019) The CNS immune landscape from the viewpoint of a T cell. Trends Neurosci 42(10):667–679

    Article  CAS  PubMed  Google Scholar 

  16. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, Greter M, Becher B (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(2):380–395

    Article  CAS  PubMed  Google Scholar 

  17. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alves de Lima K, Rustenhoven J, Da Mesquita S, Wall M, Salvador AF, Smirnov I, Martelossi Cebinelli G, Mamuladze T, Baker W, Papadopoulos Z, Lopes MB, Cao WS, Xie XS, Herz J, Kipnis J (2020) Meningeal gammadelta T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat Immunol 21(11):1421–1429

    Article  CAS  PubMed  Google Scholar 

  19. Filiano AJ, Gadani SP, Kipnis J (2017) How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci 18(6):375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribeiro M, Brigas HC, Temido-Ferreira M, Pousinha PA, Regen T, Santa C, Coelho JE, Marques-Morgado I, Valente CA, Omenetti S, Stockinger B, Waisman A, Manadas B, Lopes LV, Silva-Santos B, Ribot JC (2019) Meningeal gammadelta T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci Immunol 4(40):eaay5199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin Y, Zhang JC, Yao CY, Wu Y, Abdelgawad AF, Yao SL, Yuan SY (2016) Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice. Cell Death Dis 7(6):e2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5(1):49–55

    Article  CAS  PubMed  Google Scholar 

  23. Mastorakos P, Mihelson N, Luby M, Burks SR, Johnson K, Hsia AW, Witko J, Frank JA, Latour L, McGavern DB (2021) Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat Neurosci 24(2):245–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Russo MV, McGavern DB (2016) Inflammatory neuroprotection following traumatic brain injury. Science 353(6301):783–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mundt S, Mrdjen D, Utz SG, Greter M, Schreiner B, Becher B (2019) Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci Immunol 4(31)

  26. Herisson F, Frodermann V, Courties G, Rohde D, Sun Y, Vandoorne K, Wojtkiewicz GR, Masson GS, Vinegoni C, Kim J, Kim DE, Weissleder R, Swirski FK, Moskowitz MA, Nahrendorf M (2018) Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci 21(9):1209–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazzitelli JA, Smyth LCD, Cross KA, Dykstra T, Sun J, Du S, Mamuladze T, Smirnov I, Rustenhoven J, Kipnis J (2022) Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat Neurosci 25(5):555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857

    Article  PubMed  Google Scholar 

  29. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, Orthey E, Arumugam TV, Leypoldt F, Simova O, Thom V, Friese MA, Prinz I, Holscher C, Glatzel M, Korn T, Gerloff C, Tolosa E, Magnus T (2012) Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 120(18):3793–3802

    Article  CAS  PubMed  Google Scholar 

  30. Gelderblom M, Gallizioli M, Ludewig P, Thom V, Arunachalam P, Rissiek B, Bernreuther C, Glatzel M, Korn T, Arumugam TV, Sedlacik J, Gerloff C, Tolosa E, Planas AM, Magnus T (2018) IL-23 (interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (interleukin-17) response in stroke. Stroke 49(1):155–164

    Article  CAS  PubMed  Google Scholar 

  31. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Iadecola C, Anrather J (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 22(5):516–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B, Wiendl H, Stoll G (2010) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115(18):3835–3842

    Article  CAS  PubMed  Google Scholar 

  33. Tsai AS, Berry K, Beneyto MM, Gaudilliere D, Ganio EA, Culos A, Ghaemi MS, Choisy B, Djebali K, Einhaus JF, Bertrand B, Tanada A, Stanley N, Fallahzadeh R, Baca Q, Quach LN, Osborn E, Drag L, Lansberg MG et al (2019) A year-long immune profile of the systemic response in acute stroke survivors. Brain 142(4):978–991

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Doyle KP, Quach LN, Sole M, Axtell RC, Nguyen TV, Soler-Llavina GJ, Jurado S, Han J, Steinman L, Longo FM, Schneider JA, Malenka RC, Buckwalter MS (2015) B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci 35(5):2133–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benakis C, Llovera G, Liesz A (2018) The meningeal and choroidal infiltration routes for leukocytes in stroke. Ther Adv Neurol Disord 11:1756286418783708

    Article  PubMed  PubMed Central  Google Scholar 

  37. Perez-de-Puig I, Miro-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A, Planas AM (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 129(2):239–257

    Article  CAS  PubMed  Google Scholar 

  38. Eash KJ, Greenbaum AM, Gopalan PK, Link DC (2010) CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 120(7):2423–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14(9):585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Llovera G, Benakis C, Enzmann G, Cai R, Arzberger T, Ghasemigharagoz A, Mao X, Malik R, Lazarevic I, Liebscher S, Erturk A, Meissner L, Vivien D, Haffner C, Plesnila N, Montaner J, Engelhardt B, Liesz A (2017) The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol 134(6):851–868

    Article  CAS  PubMed  Google Scholar 

  41. Desilles JP, Loyau S, Syvannarath V, Gonzalez-Valcarcel J, Cantier M, Louedec L, Lapergue B, Amarenco P, Ajzenberg N, Jandrot-Perrus M, Michel JB, Ho-Tin-Noe B, Mazighi M (2015) Alteplase reduces downstream microvascular thrombosis and improves the benefit of large artery recanalization in stroke. Stroke 46(11):3241–3248

    Article  PubMed  Google Scholar 

  42. Desilles JP, Syvannarath V, Di Meglio L, Ducroux C, Boisseau W, Louedec L, Jandrot-Perrus M, Michel JB, Mazighi M, Ho-Tin-Noe B (2018) Downstream microvascular thrombosis in cortical venules is an early response to proximal cerebral arterial occlusion. J Am Heart Assoc 7(5)

  43. Desilles JP, Syvannarath V, Ollivier V, Journe C, Delbosc S, Ducroux C, Boisseau W, Louedec L, Di Meglio L, Loyau S, Jandrot-Perrus M, Potier L, Michel JB, Mazighi M, Ho-Tin-Noe B (2017) Exacerbation of thromboinflammation by hyperglycemia precipitates cerebral infarct growth and hemorrhagic transformation. Stroke 48(7):1932–1940

    Article  PubMed  Google Scholar 

  44. Maier B, Desilles JP, Mazighi M (2020) Intracranial hemorrhage after reperfusion therapies in acute ischemic stroke patients. Front Neurol 11(1666):599908

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maestrini I, Tagzirt M, Gautier S, Dupont A, Mendyk AM, Susen S, Tailleux A, Vallez E, Staels B, Cordonnier C, Leys D, Bordet R (2020) Analysis of the association of MPO and MMP-9 with stroke severity and outcome: cohort study. Neurology 95(1):e97–e108

    Article  CAS  PubMed  Google Scholar 

  46. Tay A, Tamam Y, Yokus B, Ustundag M, Orak M (2015) Serum myeloperoxidase levels in predicting the severity of stroke and mortality in acute ischemic stroke patients. Eur Rev Med Pharmacol Sci 19(11):1983–1988

    CAS  PubMed  Google Scholar 

  47. Laridan E, Denorme F, Desender L, Francois O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82(2):223–232

    Article  CAS  PubMed  Google Scholar 

  48. Grosse GM, Blume N, Abu-Fares O, Gotz F, Ernst J, Leotescu A, Gabriel MM, van Gemmeren T, Worthmann H, Lichtinghagen R, Imker R, Falk CS, Weissenborn K, Schuppner R, de Buhr N (2022) Endogenous deoxyribonuclease activity and cell-free deoxyribonucleic acid in acute ischemic stroke: a cohort study. Stroke 53(4):1235–1244

    Article  CAS  PubMed  Google Scholar 

  49. Martinod K, Wagner DD (2014) Thrombosis: tangled up in NETs. Blood 123(18):2768–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Di Meglio L, Desilles JP, Ollivier V, Nomenjanahary MS, Di Meglio S, Deschildre C, Loyau S, Olivot JM, Blanc R, Piotin M, Bouton MC, Michel JB, Jandrot-Perrus M, Ho-Tin-Noe B, Mazighi M (2019) Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology 93(18):e1686–e1698

    Article  PubMed  PubMed Central  Google Scholar 

  51. Renu A, Millan M, San Roman L, Blasco J, Marti-Fabregas J, Terceno M, Amaro S, Serena J, Urra X, Laredo C, Barranco R, Camps-Renom P, Zarco F, Oleaga L, Cardona P, Castano C, Macho J, Cuadrado-Godia E, Vivas E et al (2022) Investigators, Effect of intra-arterial alteplase vs placebo following successful thrombectomy on functional outcomes in patients with large vessel occlusion acute ischemic stroke: the CHOICE randomized clinical trial. JAMA 327(9):826–835

    Article  CAS  PubMed  Google Scholar 

  52. Liesz A, Hu X, Kleinschnitz C, Offner H (2015) Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 46(5):1422–1430

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schwartz M, Kipnis J (2004) Self and non-self discrimination is needed for the existence rather than deletion of autoimmunity: the role of regulatory T cells in protective autoimmunity. Cell Mol Life Sci 61(18):2285–2289

    Article  CAS  PubMed  Google Scholar 

  54. Baruch K, Deczkowska A, Rosenzweig N, Tsitsou-Kampeli A, Sharif AM, Matcovitch-Natan O, Kertser A, David E, Amit I, Schwartz M (2016) PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat Med 22(2):135–137

    Article  CAS  PubMed  Google Scholar 

  55. Bodhankar S, Chen Y, Lapato A, Dotson AL, Wang J, Vandenbark AA, Saugstad JA, Offner H (2015) PD-L1 monoclonal antibody treats ischemic stroke by controlling central nervous system inflammation. Stroke 46(10):2926–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Desilles JP, Rouchaud A, Labreuche J, Meseguer E, Laissy JP, Serfaty JM, Lapergue B, Klein IF, Guidoux C, Cabrejo L, Sirimarco G, Lavallee PC, Schouman-Claeys E, Amarenco P, Mazighi M (2013) Blood-brain barrier disruption is associated with increased mortality after endovascular therapy. Neurology 80(9):844–851

    Article  PubMed  Google Scholar 

  57. Bivard A, Kleinig T, Churilov L, Levi C, Lin L, Cheng X, Chen C, Aviv R, Choi PMC, Spratt NJ, Butcher K, Dong Q, Parsons M (2020) Permeability measures predict hemorrhagic transformation after ischemic stroke. Ann Neurol 88(3):466–476

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leigh R, Christensen S, Campbell BC, Marks MP, Albers GW, Lansberg MG, Investigators D (2016) Pretreatment blood-brain barrier disruption and post-endovascular intracranial hemorrhage. Neurology 87(3):263–269

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rubiera M, Garcia-Tornel A, Olive-Gadea M, Campos D, Requena M, Vert C, Pagola J, Rodriguez-Luna D, Muchada M, Boned S, Rodriguez-Villatoro N, Juega J, Deck M, Sanjuan E, Hernandez D, Pinana C, Tomasello A, Molina CA, Ribo M (2020) Computed tomography perfusion after thrombectomy: an immediate surrogate marker of outcome after recanalization in acute stroke. Stroke 51(6):1736–1742

    Article  PubMed  Google Scholar 

  60. Hom J, Dankbaar JW, Soares BP, Schneider T, Cheng SC, Bredno J, Lau BC, Smith W, Dillon WP, Wintermark M (2011) Blood-brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am J Neuroradiol 32(1):41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Simpkins AN, Dias C, Leigh R, I. (2016) National Institutes of Health Natural History of Stroke, Identification of reversible disruption of the human blood-brain barrier following acute ischemia. Stroke 47(9):2405–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu S, Liebeskind DS, Dua S, Wilhalme H, Elashoff D, Qiao XJ, Alger JR, Sanossian N, Starkman S, Ali LK, Scalzo F, Lou X, Yoo B, Saver JL, Salamon N, Wang DJ, Investigators US (2015) Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke. J Cereb Blood Flow Metab 35(4):630–637

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ng FC, Churilov L, Yassi N, Kleinig TJ, Thijs V, Wu TY, Shah DG, Dewey HM, Sharma G, Desmond PM, Yan B, Parsons MW, Donnan GA, Davis SM, Mitchell PJ, Leigh R, Campbell BCV, Part E-IT (2022) Investigators, Microvascular dysfunction in blood-brain barrier disruption and hypoperfusion within the infarct posttreatment are associated with cerebral edema. Stroke 53(5):1597–1605

    Article  CAS  PubMed  Google Scholar 

  64. Rouchaud A, Pistocchi S, Blanc R, Engrand N, Bartolini B, Piotin M (2014) Predictive value of flat-panel CT for haemorrhagic transformations in patients with acute stroke treated with thrombectomy. J Neurointerv Surg 6(2):139–143

    Article  PubMed  Google Scholar 

  65. Warach S, Latour LL (2004) Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke 35(11 Suppl 1):2659–2661

    Article  PubMed  Google Scholar 

  66. Nadareishvili Z, Luby M, Leigh R, Shah J, Lynch JK, Hsia AW, Benson RT, Latour LL (2018) An MRI hyperintense acute reperfusion marker is related to elevated peripheral monocyte count in acute ischemic stroke. J Neuroimaging 28(1):57–60

    Article  PubMed  Google Scholar 

  67. Verheggen ICM, Freeze WM, de Jong JJA, Jansen JFA, Postma AA, van Boxtel MPJ, Verhey FRJ, Backes WH (2021) Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity. Neurosci Biobehav Rev 127:171–183

    Article  CAS  PubMed  Google Scholar 

  68. Anderson VC, Tagge IJ, Doud A, Li X, Springer CS Jr, Quinn JF, Kaye JA, Wild KV, Rooney WD (2022) DCE-MRI of brain fluid barriers: in vivo water cycling at the human choroid plexus. Tissue Barriers 10(1):1963143

    Article  PubMed  Google Scholar 

  69. Evans PG, Sokolska M, Alves A, Harrison IF, Ohene Y, Nahavandi P, Ismail O, Miranda E, Lythgoe MF, Thomas DL, Wells JA (2020) Non-invasive MRI of blood-cerebrospinal fluid barrier function. Nat Commun 11(1):2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Klistorner S, Barnett MH, Parratt J, Yiannikas C, Graham SL, Klistorner A (2022) Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. Ann Clin Transl Neurol 9(10):1528–1537

    Article  PubMed  PubMed Central  Google Scholar 

  71. Egorova N, Gottlieb E, Khlif MS, Spratt NJ, Brodtmann A (2019) Choroid plexus volume after stroke. Int J Stroke 14(9):923–930

    Article  PubMed  Google Scholar 

  72. Ricigliano VAG, Morena E, Colombi A, Tonietto M, Hamzaoui M, Poirion E, Bottlaender M, Gervais P, Louapre C, Bodini B, Stankoff B (2021) Choroid plexus enlargement in inflammatory multiple sclerosis: 3.0-T MRI and translocator protein PET evaluation. Radiology 301(1):166–177

    Article  PubMed  Google Scholar 

  73. Choi JD, Moon Y, Kim HJ, Yim Y, Lee S, Moon WJ (2022) Choroid plexus volume and permeability at brain MRI within the Alzheimer disease clinical spectrum. Radiology 304(3):635–645

    Article  PubMed  Google Scholar 

  74. Huang J, Tong J, Zhang P, Zhou Y, Li Y, Tan S, Wang Z, Yang F, Kochunov P, Chiappelli J, Tian B, Tian L, Hong LE, Tan Y (2022) Elevated salivary kynurenic acid levels related to enlarged choroid plexus and severity of clinical phenotypes in treatment-resistant schizophrenia. Brain Behav Immun 106:32–39

    Article  CAS  PubMed  Google Scholar 

  75. Eide PK, Valnes LM, Pripp AH, Mardal KA, Ringstad G (2020) Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 40(9):1849–1858

    Article  CAS  PubMed  Google Scholar 

  76. Fleischer V, Gonzalez-Escamilla G, Ciolac D, Albrecht P, Kury P, Gruchot J, Dietrich M, Hecker C, Muntefering T, Bock S, Oshaghi M, Radetz A, Cerina M, Kramer J, Wachsmuth L, Faber C, Lassmann H, Ruck T, Meuth SG et al (2021) Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proc Natl Acad Sci USA 118(36)

  77. Cogo A, Mangin G, Maier B, Callebert J, Mazighi M, Chabriat H, Launay JM, Huberfeld G, Kubis N (2021) Increased serum QUIN/KYNA is a reliable biomarker of post-stroke cognitive decline. Mol Neurodegener 16(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, Louveau A, Zaghloul KA, Pittaluga S, Kipnis J, Reich DS (2017) Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 6

  79. Ringstad G, Eide PK (2020) Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat Commun 11(1):354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jacob L, de Brito Neto J, Lenck S, Corcy C, Benbelkacem F, Geraldo LH, Xu Y, Thomas JM, El Kamouh MR, Spajer M, Potier MC, Haik S, Kalamarides M, Stankoff B, Lehericy S, Eichmann A, J.L. (2022) Thomas, Conserved meningeal lymphatic drainage circuits in mice and humans. J Exp Med 219(8)

  81. Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, Luo Z, Sun J, Jiang Q, Lou M (2020) Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol 87(3):357–369

    Article  CAS  PubMed  Google Scholar 

  82. Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, Chen YK, Qin C, Wang JQ, Xiang Z, Zhang ZX, Cao QC, Wang W, Li JY, Wu E, Tang BS, Ma MM, Teng JF, Wang XJ (2021) Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med 27(3):411–418

    Article  CAS  PubMed  Google Scholar 

  83. Wang X, Tian H, Liu H, Liang D, Qin C, Zhu Q, Meng L, Fu Y, Xu S, Zhai Y, Ding X, Wang X (2021) Impaired meningeal lymphatic flow in NMOSD patients with acute attack. Front Immunol 12:692051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier KR, Berndt M, Plautz EJ, Dellinger MT, Stowe AM (2020) Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab 40(2):263–275

    Article  PubMed  Google Scholar 

  85. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB (2005) Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24(2):591–595

    Article  PubMed  Google Scholar 

  86. Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, Jones T, Kreutzberg GW, Banati RB (2000) Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK1195. Neurology 55(7):1052–1054

    Article  CAS  PubMed  Google Scholar 

  87. Price CJ, Wang D, Menon DK, Guadagno JV, Cleij M, Fryer T, Aigbirhio F, Baron JC, Warburton EA (2006) Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 37(7):1749–1753

    Article  PubMed  Google Scholar 

  88. Morris RS, Simon Jones P, Alawneh JA, Hong YT, Fryer TD, Aigbirhio FI, Warburton EA, Baron JC (2018) Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man. Brain 141(7):2098–2111

    Article  PubMed  Google Scholar 

  89. Gauberti M, De Lizarrondo SM, Vivien D (2016) The “inflammatory penumbra” in ischemic stroke: from clinical data to experimental evidence. Eur Stroke J 1(1):20–27

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ringstad G, Eide PK (2022) Molecular trans-dural efflux to skull bone marrow in humans with CSF disorders. Brain 145(4):1464–1472

    Article  PubMed  Google Scholar 

  91. Androvic P, Kirdajova D, Tureckova J, Zucha D, Rohlova E, Abaffy P, Kriska J, Valny M, Anderova M, Kubista M, Valihrach L (2020) Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. Cell Rep 31(11):107777

    Article  CAS  PubMed  Google Scholar 

  92. Schurch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, Zlobec I, Chu P, Black S, Demeter J, McIlwain DR, Kinoshita S, Samusik N, Goltsev Y, Nolan GP (2020) Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182(5):1341–1359 e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McCaffrey EF, Donato M, Keren L, Chen Z, Delmastro A, Fitzpatrick MB, Gupta S, Greenwald NF, Baranski A, Graf W, Kumar R, Bosse M, Fullaway CC, Ramdial PK, Forgo E, Jojic V, Van Valen D, Mehra S, Khader SA et al (2022) The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol 23(2):318–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Damond N, Engler S, Zanotelli VRT, Schapiro D, Wasserfall CH, Kusmartseva I, Nick HS, Thorel F, Herrera PL, Atkinson MA, Bodenmiller B (2019) A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab 29(3):755–768 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dunkler D, Sanchez-Cabo F, Heinze G (2011) Statistical analysis principles for omics data. Methods Mol Biol 719:113–131

    Article  CAS  PubMed  Google Scholar 

  96. Tibshirani R, Hastie T, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

  97. Tibshirani R (1996) Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological) 58(1):267–288

    Article  Google Scholar 

  98. Ghaemi MS, DiGiulio DB, Contrepois K, Callahan B, Ngo TTM, Lee-McMullen B, Lehallier B, Robaczewska A, McIlwain D, Rosenberg-Hasson Y, Wong RJ, Quaintance C, Culos A, Stanley N, Tanada A, Tsai A, Gaudilliere D, Ganio E, Han X et al (2019) Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics 35(1):95–103

    Article  CAS  PubMed  Google Scholar 

  99. Culos A, Tsai AS, Stanley N, Becker M, Ghaemi MS, McIlwain DR, Fallahzadeh R, Tanada A, Nassar H, Espinosa C, Xenochristou M, Ganio E, Peterson L, Han X, Stelzer IA, Ando K, Gaudilliere D, Phongpreecha T, Maric I et al (2020) Integration of mechanistic immunological knowledge into a machine learning pipeline improves predictions. Nat Mach Intell 2(10):619–628

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ding DY, Li S, Narasimhan B, Tibshirani R (2022) Cooperative learning for multiview analysis. Proc Natl Acad Sci U S A 119(38):e2202113119

    Article  CAS  PubMed  Google Scholar 

  101. Yin Q, Hung SC, Rathmell WK, Shen L, Wang L, Lin W, Fielding JR, Khandani AH, Woods ME, Milowsky MI, Brooks SA, Wallen EM, Shen D (2018) Integrative radiomics expression predicts molecular subtypes of primary clear cell renal cell carcinoma. Clin Radiol 73(9):782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chaddad A, Daniel P, Sabri S, Desrosiers C, Abdulkarim B (2019) Integration of radiomic and multi-omic analyses predicts survival of newly diagnosed IDH1 wild-type glioblastoma. Cancers (Basel) 11(8)

  103. Zanfardino M, Franzese M, Pane K, Cavaliere C, Monti S, Esposito G, Salvatore M, Aiello M (2019) Bringing radiomics into a multi-omics framework for a comprehensive genotype-phenotype characterization of oncological diseases. J Transl Med 17(1):337

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dyani Gaudilliere for providing her scientific input and editing the manuscript.

Funding

This work was supported in part by the National Institute of Health (NIH) R35GM137936, P01HD106414 (BG), the Precision Health and Integrated Diagnosis Center, and the Center for Human Systems Immunology at Stanford (BG). This work was also supported by INSERM and by public grants overseen by the French National Research Agency (ANR) as part of the Investments for the Future program (PIA) under grant agreement No. ANR-18-RHUS-0001 (RHU Booster) and ANR-ETHERISCH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikael Mazighi or Brice Gaudillière.

Ethics declarations

Conflict of interest

MM declares institutional fees for teaching presentations from Boerhinger Ingelheim, Medtronic, Amgen, and consulting fees from Boerhinger Ingelheim, Acticor Biotech, and Air liquide. MM received a grant from the French National Research Agency (ANR) as part of the Investments for the future program (PIA) (grant agreement no. ANR-18-RHUS-0001) for the BOOSTER (Brain clOt persOnalized therapeutic Strategies for sTroke Emergent Reperfusion) consortium. BG declares consulting fees from Surge2surgery. JMO declares institutional fees for teaching presentation for Boehringer Ingelheim and Bristol Myers Squibb; Consulting fees from Abbvie, Acticor, and Bioxodes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Single-cell and spatial multi-omics in clinical outcomes studies - Guest Editor: Brice Gaudillière

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maïer, B., Tsai, A.S., Einhaus, J.F. et al. Neuroimaging is the new “spatial omic”: multi-omic approaches to neuro-inflammation and immuno-thrombosis in acute ischemic stroke. Semin Immunopathol 45, 125–143 (2023). https://doi.org/10.1007/s00281-023-00984-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-023-00984-6

Keywords

Navigation