Skip to main content

Advertisement

Log in

Histochemical examination of the effects of high-dose 1,25(OH)2D3 on bone remodeling in young growing rats

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Vitamin D has an anabolic effect on bone developmental processes and is involved in maintaining skeletal integrity. In recent years, pediatric cases of vitamin D intoxication have attracted attention. Therefore, the aim of this study was to investigate the influence of long-term administration of physiologically-high-dose calcitriol (1,25(OH)2D3) on bone remodeling in young developing rats. Neonatal rats received once-daily subcutaneous injection of calcitriol (250 ng/kg body weight), or PBS only as a control, for 3 weeks. At 1, 2 and 4 weeks’ post-administration, rats were sacrificed and fixed by transcardial perfusion with 4 % paraformaldehyde, following which tibiae were extracted for histochemical analysis. Compared with the control group, the number of tartrate-resistant acid phosphatase- and Cathepsin K-positive osteoclasts were significantly increased, and the expression of alkaline phosphatase in osteoblasts was decreased in trabecular bone of rats administered high-dose 1,25(OH)2D3, leading to decreased trabecular bone volume. In addition, the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) was increased, while that of osteoprotegerin was weaker in osteoblasts in the experimental group compared with the control group. Moreover, there was weaker immunoreactivity for EphrinB2 in osteoclasts and EphB4 in osteoblasts of trabecular bone in the experimental group compared with the control group. These findings suggest that long-term use of physiologically-high dose calcitriol may result in bone loss through RANKL/RANK/osteoprotegerin and EphrinB2–EphB4 signaling pathways, and that these negative effects could continue after drug withdrawal. Therefore, optimal limits for vitamin D administration need to be established for children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan EH, Häusler KD, Wei T, Gooi JH, Quinn JM, Crimeen-Irwin B, Pompolo S, Sims NA, Gillespie MT, Onyia JE, Martin TJ (2008) EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. J Bone Miner Res 23:1170–1181

    Article  CAS  PubMed  Google Scholar 

  • Alshamsan FM, Bin-Abbas BS (2016) Knowledge, awareness, attitudes and sources of vitamin D deficiency and sufficiency in Saudi children. Saudi Med J 37:579–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Arthur A, Zannettino A, Panagopoulos R, Koblar SA, Sims NA, Stylianou C, Matsuo K, Gronthos S (2011) EphB/ephrin-B interactions mediate human MSC attachment, migration and osteochondral differentiation. Bone 48:533–542

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Wang WL, Liang JJ (2015) Genistein attenuates glucocorticoid-induced bone deleterious effects through regulation Eph/ephrin expression in aged mice. Int J Clin Exp Pathol 8:394–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole AA, Walters LM (1987) Tartrate-resistant acid phosphatase in bone and cartilage following decalcification and cold-embedding in plastic. J Histochem Cytochem: Off J Histochem Soc 35:203–206

    Article  CAS  Google Scholar 

  • Cong L, Zhang C, Tu G (2015) Osteoblastic NF-kappaB pathway is involved in 1alpha, 25(OH)2D3-induced osteoclast-like cells formation in vitro. Int J Clin Exp Pathol 8:5988–5996

    PubMed  PubMed Central  Google Scholar 

  • Dura-Trave T, Gallinas-Victoriano F (2016) Seasonal variations in calcidiol and parathyroid hormone levels in healthy children and adolescents in Navarre, Spain: a cross-sectional study. JRSM Open 7:2054270416632704

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng W, Lv S, Cui J, Han X, Du J, Sun J, Wang K, Wang Z, Lu X, Guo J, Oda K, Amizuka N, Xu X, Li M (2015) Histochemical examination of adipose derived stem cells combined with beta-TCP for bone defects restoration under systemic administration of 1alpha,25(OH)2D3. Mater Sci Eng C Mater Biol Appl 54:133–141

    Article  CAS  PubMed  Google Scholar 

  • Ghergherechi R, Hazhir N, Tabrizi A (2012) Comparison of vitamin D deficiency and secondary hyperparathyroidism in obese and non-obese children and adolescents. Pak J Biol Sci 15:147–151

    Article  PubMed  Google Scholar 

  • Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, Riggs BL (1998) Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res: Off J Am Soc Bone Miner Res 13:205–217

    Article  CAS  Google Scholar 

  • Idelevich A, Kerschnitzki M, Shahar R, Monsonego-Ornan E (2011) 1,25(OH)2D3 alters growth plate maturation and bone architecture in young rats with normal renal function. PLoS One 6:e20772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inada M, Tsukamoto K, Hirata M, Takita M, Nagasawa K, Miyaura C (2008) Novel vitamin D3 analogs, 1alpha, 25(OH)2D(3)-26, 23-lactam (DLAMs), antagonize bone resorption via suppressing RANKL expression in osteoblasts. Biochem Biophys Res Commun 372:434–439

    Article  CAS  PubMed  Google Scholar 

  • Irie N, Takada Y, Watanabe Y, Matsuzaki Y, Naruse C, Asano M, Iwakura Y, Suda T, Matsuo K (2009) Bidirectional signaling through ephrinA2–EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem 284:14637–14644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kara C, Gunindi F, Ustyol A, Aydin M (2014) Vitamin D intoxication due to an erroneously manufactured dietary supplement in seven children. Pediatrics 133:e240–244

    Article  PubMed  Google Scholar 

  • Li Y, Bäckesjö CM, Haldosén LA, Lindgren U (2008) Species difference exists in the effects of 1 alpha, 25(oh)(2)d(3) and its analogue 2-methylene-19-nor-(20 s)-1,25-dihydroxy vitamin d(3) (2md) on osteoblastic cells. J Steroid Biochem 112:110–116 (Lieben)

    Article  CAS  Google Scholar 

  • Li M, Hasegawa T, Hogo H, Tatsumi S, Liu Z, Guo Y, Sasaki M, Tabata C, Yamamoto T, Ikeda K, Amizuka N (2013) Histological examination on osteoblastic activities in the alveolar bone of transgenic mice with induced ablation of osteocytes. Histol Histopathol 28:327–335

    PubMed  Google Scholar 

  • Lieben L, Stockmans I, Moermans K, Carmeliet G (2013) Maternal hypervitaminosis D reduces fetal bone mass and mineral acquisition and leads to neonatal lethality. Bone 57:123–131

    Article  CAS  PubMed  Google Scholar 

  • Liu HR, Cui J, Feng W, Lv SY, Du J, Sun J, Han XC, Wang ZM, Lu X, Yimin Oda K, Amizuka N, Li MQ (2015) Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats. Mater Sci Eng C 49:14–24

    Article  CAS  Google Scholar 

  • Lohmann CH, Bonewald LF, Sisk MA, Sylvia VL, Cochran DL, Dean DD, Boyan BD, Schwartz Z (2000) Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxy vitamin D3. J Bone Miner Res 15:1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Martin TJ (2013) Historically significant events in the discovery of RANK/RANKL/OPG. World J Orthop 4:186–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin TJ, Allan EH, Ho PW, Gooi JH, Quinn JM, Gillespie MT, Krasnoperov V, Sims NA (2010) Communication between ephrinB2 and EphB4 within the osteoblast lineage. Adv Exp Med Biol 658:51–60

    Article  CAS  PubMed  Google Scholar 

  • Ng AH, Frick KK, Krieger NS, Asplin JR, Cohen-McFarlane M, Culbertson CD, Kyker-Snowman K, Grynpas MD, Bushinsky DA (2014) 1,25(OH)(2)D(3) induces a mineralization defect and loss of bone mineral density in genetic hypercalciuric stone-forming rats. Calcifi Tissue Int 94:531–543

    Article  CAS  Google Scholar 

  • Oda K, Amaya Y, Fukushi-Irie M, Kinameri Y, Ohsuye K, Kubota I, Fujimura S, Kobayashi J (1999) A general method for rapid purification of soluble versions of glycosylphosphatidylinositol-anchored proteins expressed in insect cells: an application for human tissue-nonspecific alkaline phosphatase. J Biochem 126:694–699

    Article  CAS  PubMed  Google Scholar 

  • Oku Y, Tanabe R, Nakaoka K, Yamada A, Noda S, Hoshino A, Haraikawa M, Goseki-Sone M (2016) Influences of dietary vitamin D restriction on bone strength, body composition and muscle in rats fed a high-fat diet: involvement of mRNA expression of MyoD in skeletal muscle. J Nutr Biochem 32:85–90

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar K, Reis EC, Holick MF (2013) Dosing error with over-the-counter vitamin D supplement: a risk for vitamin D toxicity in infants. Clin Pediatr 52:82–85

    Article  Google Scholar 

  • Sakai S, Takaishi H, Matsuzaki K, Kaneko H, Furukawa M, Miyauchi Y, Shiraishi A, Saito K, Tanaka A, Taniguchi T, Suda T, Miyamoto T, Toyama Y (2009) 1-Alpha, 25-dihydroxy vitamin D3 inhibits osteoclastogenesis through IFN-beta-dependent NFATc1 suppression. J Bone Miner Metab 27:643–652

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Nakamichi Y, Nakamura M, Sato N, Ninomiya T, Muto A, Nakamura H, Ozawa H, Iwasaki Y, Kobayashi E, Shimizu M, DeLuca HF, Takahashi N, Udagawa N (2007) New 19-nor-(20S)-1alpha,25-dihydroxy vitamin D3 analogs strongly stimulate osteoclast formation both in vivo and in vitro. Bone 40:293–304

    Article  CAS  PubMed  Google Scholar 

  • Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  CAS  PubMed  Google Scholar 

  • Suda T, Ueno Y, Fujii K, Shinki T (2003) Vitamin D and bone. J Cell Biochem 88:259–266

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Udagawa N, Suda T (2014) Vitamin D endocrine system and osteoclasts. Bonekey Rep 3:495

    Article  PubMed  PubMed Central  Google Scholar 

  • Takasu H, Sugita A, Uchiyama Y, Katagiri N, Okazaki M, Ogata E, Ikeda K (2006) c-Fos protein as a target of anti-osteoclastogenic action of vitamin D, and synthesis of new analogs. J Clin investig 116:528–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Mine T, Ogasa H, Taguchi T, Liang CT (2011) Expression of RANKL/OPG during bone remodeling in vivo. Biochem Biophys Res Commun 411:690–694

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Shinki T, Nagai Y, Murayama H, Fujii K, Suda T (2003) In vivo administration of 1,25-dihydroxy vitamin D3 suppresses the expression of RANKL mRNA in bone of thyroparathyroidectomized rats constantly infused with PTH. J Cell Biochem 90:267–277

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen JP, van Driel M, van den Bemd GJ, Pols HA (2001) Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit Rev Eukaryot Gene Expr 11:199–226

    Article  PubMed  Google Scholar 

  • Woeckel VJ, Alves RD, Swagemakers SM, Eijken M, Chiba H, van der Eerden BC, van Leeuwen JP (2010) 1Alpha,25-(OH)2D3 acts in the early phase of osteoblast differentiation to enhance mineralization via accelerated production of mature matrix vesicles. J Cell Physiol 225:593–600

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Weitzmann MN (2012) High dose 1,25(OH)2D3 inhibits osteoblast mineralization in vitro. Int J Mol Med 29:934–938

    CAS  PubMed  Google Scholar 

  • Yao JJ, Bai S, Karnauskas AJ, Bushinsky DA, Favus MJ (2005) Regulation of renal calcium receptor gene expression by 1,25-dihydroxy vitamin D3 in genetic hypercalciuric stone-forming rats. J Am Soc Nephrol 16:1300–1308

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2–EphB4 signaling controls bone homeostasis. Cell Metab 4:111–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the National Nature Science Foundation of China (Grant Nos. 81271965; 81470719; 8151101150) to Li M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minqi Li.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Jing Sun and Bao Sun have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Sun, B., Wang, W. et al. Histochemical examination of the effects of high-dose 1,25(OH)2D3 on bone remodeling in young growing rats. J Mol Hist 47, 389–399 (2016). https://doi.org/10.1007/s10735-016-9681-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-016-9681-4

Keywords

Navigation