Skip to main content

Advertisement

Log in

Nucleotide excision repair and cancer

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Nucleotide excision repair (NER) is the most versatile and best studied DNA repair system in humans. NER can repair a variety of bulky DNA damages including UV-light induced DNA photoproducts. NER consists of a multistep process in which the DNA lesion is recognized and demarcated by DNA unwinding. Then, a ~28 bp DNA damage containing oligonucleotide is excised followed by gap filling using the undamaged DNA strand as a template. The consequences of defective NER are demonstrated by three rare autosomal-rezessive NER-defective syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). XP patients show severe sun sensitivity, freckling in sun exposed skin, and develop skin cancers already during childhood. CS patients exhibit sun sensitivity, severe neurologic abnormalities, and cachectic dwarfism. Clinical symptoms of TTD patients include sun sensitivity, freckling in sun exposed skin areas, and brittle sulfur-deficient hair. In contrast to XP patients, CS and TTD patients are not skin cancer prone. Studying these syndromes can increase the knowledge of skin cancer development including cutaneous melanoma as well as basal and squamous cell carcinoma in general that may lead to new preventional and therapeutic anticancer strategies in the normal population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blankenburg S, Konig IR, Moessner R, Laspe P, Thoms KM, Krueger U, Khan SG, Westphal G, Berking C, Volkenandt M, Reich K, Neumann C, Ziegler A, Kraemer KH, Emmert S (2005a) Assessment of 3 xeroderma pigmentosum group C gene polymorphisms and risk of cutaneous melanoma: a case-control study. Carcinogenesis 26:1085–1090

    Article  CAS  Google Scholar 

  • Blankenburg S, Konig IR, Moessner R, Laspe P, Thoms KM, Krueger U, Khan SG, Westphal G, Volkenandt M, Neumann C, Ziegler A, Kraemer KH, Reich K, Emmert S (2005b) No association between three xeroderma pigmentosum group C and one group G gene polymorphisms and risk of cutaneous melanoma. Eur J Hum Genet 13:253–255

    Article  CAS  Google Scholar 

  • Bootsma D, Hoeijmakers JH (1993) DNA repair. Engagement with transcription. Nature 363:114–115

    Article  PubMed  CAS  Google Scholar 

  • Bootsma D, Kraemer KH, Cleaver JE, Hoeijmakers JH (2002) Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 211–237

    Google Scholar 

  • Broughton BC, Berneburg M, Fawcett H, Taylor EM, Arlett CF, Nardo T, Stefanini M, Menefee E, Price VH, Queille S, Sarasin A, Bohnert E, Krutmann J, Davidson R, Kraemer KH, Lehmann AR (2001) Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene. Hum Mol Genet 10:2539–2547

    Article  PubMed  CAS  Google Scholar 

  • Broughton BC, Cordonnier A, Kleijer WJ, Jaspers NG, Fawcett H, Raams A, Garritsen VH, Stary A, Avril MF, Boudsocq F, Masutani C, Hanaoka F, Fuchs RP, Sarasin A, Lehmann AR (2002) Molecular analysis of mutations in DNA polymerase eta in xeroderma pigmentosum-variant patients. Proc Natl Acad Sci U S A 99:815–820

    Article  PubMed  CAS  Google Scholar 

  • Broughton BC, Steingrimsdottir H, Lehmann AR (1996) Five polymorphisms in the coding sequence of the xeroderma pigmentosum group D gene. Mutat Res 362:209–211

    PubMed  Google Scholar 

  • Broughton BC, Steingrimsdottir H, Weber CA, Lehmann AR (1994) Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nat Genet 7:189–194

    Article  PubMed  CAS  Google Scholar 

  • Buschta-Hedayat N, Buterin T, Hess MT, Missura M, Naegeli H (1999) Recognition of nonhybridizing base pairs during nucleotide excision repair of DNA. Proc Natl Acad Sci U S A 96:6090–6095

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Eicher SA, Guo Z, Hong WK, Spitz MR, Wei Q (1998) Reduced DNA repair capacity in head and neck cancer patients. Cancer Epidemiol Biomarkers Prev 7:465–468

    PubMed  CAS  Google Scholar 

  • Cleaver JE (1972) Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to ultraviolet light. J Invest Dermatol 58:124–128

    Article  PubMed  CAS  Google Scholar 

  • Cooper PK, Nouspikel T, Clarkson SG, Leadon SA (1997) Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275:990–993

    Article  PubMed  CAS  Google Scholar 

  • de Boer J, Hoeijmakers JH (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21:453–460

    Article  PubMed  Google Scholar 

  • Dianov GL, Kuzminov AV, Mazin AV, Salganik RI (1991) Molecular mechanisms of deletion formation in Escherichia coli plasmids. I. Deletion formation mediated by long direct repeats. Mol Gen Genet 228:153–159

    Article  PubMed  CAS  Google Scholar 

  • Dodson ML, Michaels ML, Lloyd RS (1994) Unified catalytic mechanism for DNA glycosylases. J Biol Chem 269:32709–32712

    PubMed  CAS  Google Scholar 

  • Dybdahl M, Vogel U, Frentz G, Wallin H, Nexo BA (1999) Polymorphisms in the DNA repair gene XPD: correlations with risk and age at onset of basal cell carcinoma. Cancer Epidemiol Biomarkers Prev 8:77–81

    PubMed  CAS  Google Scholar 

  • Emmert S, Kobayashi N, Khan SG, Kraemer KH (2000) The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6–4 photoproducts. Natl Acad Sci U S A 97:2151–2156

    Article  CAS  Google Scholar 

  • Emmert S, Leibeling D, Runger TM (2006) Syndromes with genetic instability: Model diseases for (skin) cancerogenesis. J Dtsch Dermatol Ges (in press)

  • Emmert S, Schneider TD, Khan SG, Kraemer KH (2001) The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res 29:1443–1452

    Article  PubMed  CAS  Google Scholar 

  • Emmert S, Slor H, Busch DB, Batko S, Albert RB, Coleman D, Khan SG, Abu-Libdeh B, DiGiovanna JJ, Cunningham BB, Lee MM, Crollick J, Inui H, Ueda T, Hedayati M, Grossman L, Shahlavi T, Cleaver JE, Kraemer KH (2002) Relationship of neurologic degeneration to genotype in three Xeroderma Pigmentosum Group G patients. J Invest Dermatol 118:972–982

    Article  PubMed  CAS  Google Scholar 

  • Gasparro FP, Mitchnick M, Nash JF (1998) A review of sunscreen safety and efficacy. Photochem Photobiol 68:243–256

    Article  PubMed  CAS  Google Scholar 

  • Gerard M, Fischer L, Moncollin V, Chipoulet JM, Chambon P, Egly JM (1991) Purification and interaction properties of the human RNA polymerase B(II) general transcription factor BTF2. J Biol Chem 266:20940–20945

    PubMed  CAS  Google Scholar 

  • Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N, Jaspers NG, Raams A, Argentini M, van der Spek PJ, Botta E, Stefanini M, Egly JM, Aebersold R, Hoeijmakers JH, Vermeulen W (2004) A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 36:714–719

    Article  PubMed  CAS  Google Scholar 

  • Graham JM Jr, Anyane-Yeboa K, Raams A, Appeldoorn E, Kleijer WJ, Garritsen VH, Busch D, Edersheim TG, Jaspers NG (2001) Cerebro-oculo-facio-skeletal syndrome with a nucleotide excision-repair defect and a mutated XPD gene, with prenatal diagnosis in a triplet pregnancy. Am J Hum Genet 69:291–300

    Article  PubMed  CAS  Google Scholar 

  • Graham JM Jr, Hennekam R, Dobyns WB, Roeder E, Busch D (2004) MICRO syndrome: an entity distinct from COFS syndrome. Am J Med Genet A 128:235–245

    Article  PubMed  Google Scholar 

  • Gratchev A, Strein P, Utikal J, Sergij G (2003) Molecular genetics of Xeroderma pigmentosum variant. Exp Dermatol 12:529–536

    Article  PubMed  CAS  Google Scholar 

  • Hadshiew IM, Eller MS, Moll I, Gilchrest BA (2002) Photoprotective mechanisms of human skin. Modulation by oligonucleotides. Hautarzt 53:167–173

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (1985) DNA repair and resistance to chemotherapy. Cancer Surv 4:601–624

    PubMed  CAS  Google Scholar 

  • Hays JB, Hoffman P (1999) Measurement of activities of cyclobutane-pyrimidine-dimer and (6–4)- photoproduct photolyases. Methods Mol Biol 113:133–146

    PubMed  CAS  Google Scholar 

  • Hitomi K, Nakamura H, Kim ST, Mizukoshi T, Ishikawa T, Iwai S, Todo T (2001) Role of two histidines in the (6–4) photolyase reaction. J Biol Chem 276:10103–10109

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  PubMed  CAS  Google Scholar 

  • Holstege FC, van der Vliet PC, Timmers HT (1996) Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J 15:1666–1677

    PubMed  CAS  Google Scholar 

  • Hori N, Doi T, Karaki Y, Kikuchi M, Ikehara M, Ohtsuka E (1992) Participation of glutamic acid 23 of T4 endonuclease V in the beta- elimination reaction of an abasic site in a synthetic duplex DNA. Nucleic Acids Res 20:4761–4764

    Article  PubMed  CAS  Google Scholar 

  • Itin PH, Sarasin A, Pittelkow MR (2001) Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol 44:891–920

    Article  PubMed  CAS  Google Scholar 

  • Johnson RE, Kondratick CM, Prakash S, Prakash L (1999) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285:263–265

    Article  PubMed  CAS  Google Scholar 

  • Keeney S, Chang GJ, Linn S (1993) Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem 268:21293–21300

    PubMed  CAS  Google Scholar 

  • Khan SG, Levy HL, Legerski R, Quackenbush E, Reardon JT, Emmert S, Sancar A, Li L, Schneider TD, Cleaver JE, Kraemer KH (1998) Xeroderma pigmentosum group C splice mutation associated with autism and hypoglycinemia. J Invest Dermatol 111:791–796

    Article  PubMed  CAS  Google Scholar 

  • Khan SG, Muniz-Medina V, Shahlavi T, Baker CC, Inui H, Ueda T, Emmert S, Schneider TD, Kraemer KH (2002) The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res 30:3624–3631

    Article  PubMed  CAS  Google Scholar 

  • Khan SG, Oh KS, Shahlavi T, Ueda T, Busch DB, Inui H, Emmert S, Imoto K, Muniz-Medina V, Baker CC, DiGiovanna JJ, Schmidt D, Khadavi A, Metin A, Gozukara E, Slor H, Sarasin A, Kraemer KH (2006) Reduced XPC DNA repair gene mRNA levels in clinically normal parents of xeroderma pigmentosum patients. Carcinogenesis 27:84–94

    Article  PubMed  CAS  Google Scholar 

  • Kibitel JT, Yee V, Yarosh DB (1991) Enhancement of ultraviolet-DNA repair in denV gene transfectants and T4 endonuclease V-liposome recipients. Photochem Photobiol 54:753–760

    Article  PubMed  CAS  Google Scholar 

  • King JS, Valcarcel ER, Rufer JT, Phillips JW, Morgan WF (1993) Noncomplementary DNA double-strand-break rejoining in bacterial and human cells. Nucleic Acids Res 21:1055–1059

    Article  PubMed  CAS  Google Scholar 

  • Klungland A, Hoss M, Gunz D, Constantinou A, Clarkson SG, Doetsch PW, Bolton PH, Wood RD, Lindahl T (1999) Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 3:33–42

    Article  PubMed  CAS  Google Scholar 

  • Koberle B, Masters JR, Hartley JA, Wood RD (1999) Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr Biol 9:273–276

    Article  PubMed  CAS  Google Scholar 

  • Kraemer KH, Lee MM, Scotto J (1987) Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 123:241–250

    Article  PubMed  CAS  Google Scholar 

  • Kraemer KH, Levy DD, Parris CN, Gozukara EM, Moriwaki S, Adelberg S, Seidman MM (1994) Xeroderma pigmentosum and related disorders examining: the linkage between defective DNA repair and cancer. J Invest Dermatol 103:96S–101S

    Article  PubMed  CAS  Google Scholar 

  • Kraemer KH, Slor H (1985) Xeroderma pigmentosum. Clin Dermatol 3:33–69

    Article  PubMed  CAS  Google Scholar 

  • Kripke ML, Cox PA, Bucana C, Vink AA, Alas L, Yarosh DB (1996) Role of DNA damage in local suppression of contact hypersensitivity in mice by UV radiation.Exp Dermatol 5:173–180

    Article  PubMed  CAS  Google Scholar 

  • Kulaksiz G, Reardon JT, Sancar A (2005) Xeroderma pigmentosum complementation group E protein (XPE/DDB2): purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties. Mol Cell Biol 25:9784–9792

    Article  PubMed  CAS  Google Scholar 

  • Kusewitt DF, Budge CL, Anderson MM, Ryan SL, Ley RD (1993) Frequency of ultraviolet radiation-induced mutation at the hprt locus in repair-proficient murine fibroblasts transfected with the denV gene of bacteriophage T4. Photochem Photobiol 58:450–454

    Article  PubMed  CAS  Google Scholar 

  • Kusewitt DF, Budge CL, Ley RD (1994) Enhanced pyrimidine dimer repair in cultured murine epithelial cells transfected with the denV gene of bacteriophage T4. J Invest Dermatol 102:485–489

    Article  PubMed  CAS  Google Scholar 

  • Kusewitt DF, Ley RD, Henderson EE (1991) Enhanced pyrimidine dimer removal in repair-proficient murine fibroblasts transformed with the denV gene of bacteriophage T4. Mutat Res 255:1–9

    PubMed  CAS  Google Scholar 

  • Lalle P, Nouspikel T, Constantinou A, Thorel F, Clarkson SG (2002) The founding members of xeroderma pigmentosum group G produce XPG protein with severely impaired endonuclease activity. J Invest Dermatol 118:344–351

    Article  PubMed  CAS  Google Scholar 

  • Le Page F, Kwoh EE, Avrutskaya A, Gentil A, Leadon SA, Sarasin A, Cooper PK (2000) Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101:159–171

    Article  PubMed  CAS  Google Scholar 

  • Lehmann AR (1982) Three complementation groups in Cockayne syndrome. Mutat Res 106:347–356

    PubMed  CAS  Google Scholar 

  • Lehmann AR (1987) Cockayne‘s syndrome and trichothiodystrophy: defective repair without cancer. Cancer Rev 7:82–103

    Google Scholar 

  • Lehmann AR (2001) The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev 15:15–23

    Article  PubMed  CAS  Google Scholar 

  • Licht CL, Stevnsner T, Bohr VA (2003) Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet 73:1217–1239

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T, Wood RD (1999) Quality control by DNA repair. Science 286:1897–1905

    Article  PubMed  CAS  Google Scholar 

  • Magnaldo T, Sarasin A (2004) Xeroderma pigmentosum: from symptoms and genetics to gene-based skin therapy. Cells Tissues Organs 177:189–198

    Article  PubMed  Google Scholar 

  • Mallery DL, Tanganelli B, Colella S, Steingrimsdottir H, van Gool AJ, Troelstra C, Stefanini M, Lehmann AR (1998) Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. Am J Hum Genet 62:77–85

    Article  PubMed  CAS  Google Scholar 

  • Marti TM, Kunz C, Fleck O (2002) DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 191:28–41

    Article  PubMed  CAS  Google Scholar 

  • Masutani C, Araki M, Yamada A, Kusumoto R, Nogimori T, Maekawa T, Iwai S, Hanaoka F (1999a) Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J 18:3491–3501

    Article  CAS  Google Scholar 

  • Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F (1999b) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399:700–704

    Article  CAS  Google Scholar 

  • Meira LB, Graham JM, Jr., Greenberg CR, Busch DB, Doughty AT, Ziffer DW, Coleman DM, Savre-Train I, Friedberg EC (2000) Manitoba aboriginal kindred with original cerebro-oculo- facio-skeletal syndrome has a mutation in the Cockayne syndrome group B (CSB) gene. Am J Hum Genet 66:1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Mimaki T, Itoh N, Abe J, Tagawa T, Sato K, Yabuuchi H, Takebe H (1986) Neurological manifestations in xeroderma pigmentosum. Ann Neurol 20:70–75

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DL, Nairn RS (1989) The biology of the (6–4) photoproduct. Photochem Photobiol 49:805–819

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi H, Horio T, Akaeda T, Asada Y, Chang HR, Ishizaki K, Ikenaga M (1994) Cockayne syndrome in two adult siblings. J Am Acad Dermatol 30:329–335

    Article  PubMed  CAS  Google Scholar 

  • Morikawa K, Matsumoto O, Tsujimoto M, Katayanagi K, Ariyoshi M, Doi T, Ikehara M, Inaoka T, Ohtsuka E (1992) X-ray structure of T4 endonuclease V: an excision repair enzyme specific for a pyrimidine dimer. Science 256:523–526

    Article  PubMed  CAS  Google Scholar 

  • Moriwaki S, Stefanini M, Lehmann AR, Hoeijmakers JH, Robbins JH, Rapin I, Botta E, Tanganelli B, Vermeulen W, Broughton BC, Kraemer KH (1996) DNA repair and ultraviolet mutagenesis in cells from a new patient with xeroderma pigmentosum group G and cockayne syndrome resemble xeroderma pigmentosum cells. J Invest Dermatol 107:647–653

    Article  PubMed  CAS  Google Scholar 

  • Mu D, Sancar A (1997) Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J Biol Chem 272:7570–7573

    Article  PubMed  CAS  Google Scholar 

  • Mukhtar H, Elmets CA (1996) Photocarcinogenesis: mechanisms, models and human health implications. Photochem Photobiol 63:356–357

    Article  PubMed  CAS  Google Scholar 

  • Nance MA, Berry SA (1992) Cockayne syndrome: review of 140 cases. Am J Med Genet 42:68–84

    Article  PubMed  CAS  Google Scholar 

  • Nouspikel T, Clarkson SG (1994) Mutations that disable the DNA repair gene XPG in a xeroderma pigmentosum group G patient. Hum Mol Genet 3:963–967

    Article  PubMed  CAS  Google Scholar 

  • Nouspikel T, Lalle P, Leadon SA, Cooper PK, Clarkson SG (1997) A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc Natl Acad Sci U S A 94:3116–3121

    Article  PubMed  CAS  Google Scholar 

  • Nuzzo F, Stefanini M (1989) The association of xeroderma pigmentosum with trichothiodystrophy: a clue to a better understanding of XP-D? In: Castellani A (ed) DNA damage and repair. Plenum Press, New York, London, pp 61–72

    Google Scholar 

  • Parris CN, Kraemer KH (1993) Ultraviolet-induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal. Proc Natl Acad Sci U S A 90:7260–7264

    Article  PubMed  CAS  Google Scholar 

  • Petit C, Sancar A (1999) Nucleotide excision repair: from E. coli to man. Biochimie 81:15–25

    Article  PubMed  CAS  Google Scholar 

  • Price VH, Odom RB, Ward WH, Jones FT (1980) Trichothiodystrophy: sulfur-deficient brittle hair as a marker for a neuroectodermal symptom complex. Arch Dermatol 116:1375–1384

    Article  PubMed  CAS  Google Scholar 

  • Qiao Y, Spitz MR, Shen H, Guo Z, Shete S, Hedayati M, Grossman L, Mohrenweiser H, Wei Q (2002) Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis 23:295–299

    Article  PubMed  CAS  Google Scholar 

  • Radany EH, Naumovski L, Love JD, Gutekunst KA, Hall DH, Friedberg EC (1984) Physical mapping and complete nucleotide sequence of the denV gene of bacteriophage T4. J Virol 52:846–856

    PubMed  CAS  Google Scholar 

  • Rapin I, Lindenbaum Y, Dickson DW, Kraemer KH, Robbins JH (2000) Cockayne syndrome and xeroderma pigmentosum. Neurology 55:1442–1449

    PubMed  CAS  Google Scholar 

  • Reardon JT, Bessho T, Kung HC, Bolton PH, Sancar A (1997) In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci U S A 94:9463–9468

    Article  PubMed  CAS  Google Scholar 

  • Richards FM, Goudie DR, Cooper WN, Jene Q, Barroso I, Wicking C, Wainwright BJ, Ferguson-Smith MA (1997) Mapping the multiple self-healing squamous epithelioma (MSSE) gene and investigation of xeroderma pigmentosum group A (XPA) and PATCHED (PTCH) as candidate genes. Hum Genet 101:317–322

    Article  PubMed  CAS  Google Scholar 

  • Robbins JH (1988) Xeroderma pigmentosum. Defective DNA repair causes skin cancer and neurodegeneration. JAMA 260:384–388

    Article  PubMed  CAS  Google Scholar 

  • Robbins JH, Brumback RA, Mendiones M, Barrett SF, Carl JR, Cho S, Denckla MB, Ganges MB, Gerber LH, Guthrie RA (1991) Neurological disease in xeroderma pigmentosum. Documentation of a late onset type of the juvenile onset form. Brain 114(Pt 3):1335–1361

    Google Scholar 

  • Robbins JH, Kraemer KH, Lutzner MA, Festoff BW, Coon HG (1974) Xeroderma pigmentosum. An inherited diseases with sun sensitivity, multiple cutaneous neoplasms, and abnormal DNA repair. Ann Intern Med 80:221–248

    PubMed  CAS  Google Scholar 

  • Runger TM, Emmert S, Schadendorf D, Diem C, Epe B, Hellfritsch D (2000) Alterations of DNA repair in melanoma cell lines resistant to cisplatin, fotemustine, or etoposide. J Invest Dermatol 114:34–39

    Article  PubMed  CAS  Google Scholar 

  • Smith JR, Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273:63–67

    Article  PubMed  CAS  Google Scholar 

  • Spivak G, Hanawalt PC (1992) Translesion DNA synthesis in the dihydrofolate reductase domain of UV- irradiated CHO cells. Biochemistry 31:6794–6800

    Article  PubMed  CAS  Google Scholar 

  • Stefanini M, Fawcett H, Botta E, Nardo T, Lehmann AR (1996) Genetic analysis of twenty-two patients with Cockayne syndrome. Hum Genet 97:418–423

    Article  PubMed  CAS  Google Scholar 

  • Stefanini M, Lagomarsini P, Arlett CF, Marinoni S, Borrone C, Crovato F, Trevisan G, Cordone G, Nuzzo F (1986) Xeroderma pigmentosum (complementation group D) mutation is present in patients affected by trichothiodystrophy with photosensitivity. Hum Genet 74:107–112

    Article  PubMed  CAS  Google Scholar 

  • Stefanini M, Vermeulen W, Weeda G, Giliani S, Nardo T, Mezzina M, Sarasin A, Harper JI, Arlett CF, Hoeijmakers JH (1993) A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy. Am J Hum Genet 53:817–821

    PubMed  CAS  Google Scholar 

  • Stege H, Roza L, Vink AA, Grewe M, Ruzicka T, Grether-Beck S, Krutmann J (2000) Enzyme plus light therapy to repair DNA damage in ultraviolet-B- irradiated human skin. Proc Natl Acad Sci U S A 97:1790–1795

    Article  PubMed  CAS  Google Scholar 

  • Sutherland BM, Hacham H, Bennett P, Sutherland JC, Moran M, Gange RW (2002) Repair of cyclobutyl pyrimidine dimers in human skin: variability among normal humans in nucleotide excision and in photorepair. Photodermatol Photoimmunol Photomed 18:109–116

    Article  PubMed  CAS  Google Scholar 

  • Sutherland BM, Hacham H, Gange RW, Maytum D, Sutherland JC (1990) DNA damage and repair in human skin: pathways and questions. Basic Life Sci 53:149–160

    PubMed  CAS  Google Scholar 

  • Swift M, Chase C (1979) Cancer in families with xeroderma pigmentosum. J Natl Cancer Inst 62:1415–1421

    PubMed  CAS  Google Scholar 

  • Taieb A, Van Neste D, Lacombe D, Mezzina M, Sarasin A (1994) Bébé collodion d’ évolution favorable définissant un nouveau groupe génétique de trichothiodystrophie. Ann Dermatol Venereol S80

  • Takebayashi Y, Pourquier P, Zimonjic DB, Nakayama K, Emmert S, Ueda T, Urasaki Y, Kanzaki A, Akiyama SI, Popescu N, Kraemer KH, Pommier Y (2001) Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nat Med 7:961–966

    Article  PubMed  CAS  Google Scholar 

  • Takebe H, Nishigori C, Satoh Y (1987) Genetics and skin cancer of xeroderma pigmentosum in Japan. Jpn J Cancer Res 78:1135–1143

    PubMed  CAS  Google Scholar 

  • Tanaka K, Sekiguchi M, Okada Y (1975) Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus). Proc Natl Acad Sci U S A 72:4071–4075

    Article  PubMed  CAS  Google Scholar 

  • Taylor EM, Broughton BC, Botta E, Stefanini M, Sarasin A, Jaspers NG, Fawcett H, Harcourt SA, Arlett CF, Lehmann AR (1997) Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci U S A 94:8658–8663

    Article  PubMed  CAS  Google Scholar 

  • Tomescu D, Kavanagh G, Ha T, Campbell H, Melton DW (2001) Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma. Carcinogenesis 22:403–408

    Article  PubMed  CAS  Google Scholar 

  • Tsambaos D, Nikiforidis G, Balas C, Marinoni S (1994) Trichothiodystrophic hair reveals an abnormal pattern of viscoelastic parameters. Skin Pharmacol 7:257–261

    Article  PubMed  CAS  Google Scholar 

  • Van Neste DJ, Gillespie JM, Marshall RC, Taieb A, De Brouwer B (1993) Morphological and biochemical characteristics of trichothiodystrophy- variant hair are maintained after grafting of scalp specimens on to nude mice. Br J Dermatol 128:384–387

    Article  PubMed  Google Scholar 

  • van Steeg H, Kraemer KH (1999) Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer. Mol Med Today 5:86–94

    Article  PubMed  Google Scholar 

  • Venema J, van Hoffen A, Karcagi V, Natarajan AT, van Zeeland AA, Mullenders LH (1991) Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol Cell Biol 11:4128–4134

    PubMed  CAS  Google Scholar 

  • Vermeulen W, van Vuuren AJ, Chipoulet M, Schaeffer L, Appeldoorn E, Weeda G, Jaspers NG, Priestley A, Arlett CF, Lehmann AR (1994) Three unusual repair deficiencies associated with transcription factor BTF2(TFIIH): evidence for the existence of a transcription syndrome. Cold Spring Harb Symp Quant Biol 59:317–329

    PubMed  CAS  Google Scholar 

  • Vilpo JA, Vilpo LM, Szymkowski DE, O’Donovan A, Wood RD (1995) An XPG DNA repair defect causing mutagen hypersensitivity in mouse leukemia L1210 cells. Mol Cell Biol 15:290–297

    PubMed  CAS  Google Scholar 

  • von Hebra F, Kaposi M (1874) On diseases of the skin, including the exanthema. In Tay W, 3 edn. p. 252. New Sydenham Society, London

  • Weeda G, Eveno E, Donker I, Vermeulen W, Chevallier- Lagente O, Taieb A, Stary A, Hoeijmakers JH, Mezzina M, Sarasin A (1997) A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am J Hum Genet 60:320–329

    PubMed  CAS  Google Scholar 

  • Wei Q, Cheng L, Hong WK, Spitz MR (1996) Reduced DNA repair capacity in lung cancer patients. Cancer Res 56:4103–4107

    PubMed  CAS  Google Scholar 

  • Wei Q, Lee JE, Gershenwald JE, Ross MI, Mansfield PF, Strom SS, Wang LE, Guo Z, Qiao Y, Amos CI, Spitz MR, Duvic M (2003) Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma. J Natl Cancer Inst 95:308–315

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Matanoski GM, Farmer ER, Hedayati MA, Grossman L (1993) DNA repair and aging in basal cell carcinoma: a molecular epidemiology study. Proc Natl Acad Sci U S A 90:1614–1618

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Matanoski GM, Farmer ER, Hedayati MA, Grossman L (1995) DNA repair capacity for ultraviolet light-induced damage is reduced in peripheral lymphocytes from patients with basal cell carcinoma. J Invest Dermatol 104:933–936

    Article  PubMed  CAS  Google Scholar 

  • Wood RD (1999) DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 81:39–44

    Article  PubMed  CAS  Google Scholar 

  • Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291:1284–1289

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Zhao H, Wei Q, Amos CI, Zhang K, Guo Z, Qiao Y, Hong WK, Spitz MR (2003) XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis 24:505–509

    Article  PubMed  CAS  Google Scholar 

  • Yarosh D, Alas LG, Yee V, Oberyszyn A, Kibitel JT, Mitchell D, Rosenstein R, Spinowitz A, Citron M (1992a) Pyrimidine dimer removal enhanced by DNA repair liposomes reduces the incidence of UV skin cancer in mice. Cancer Res 52:4227–4231

    CAS  Google Scholar 

  • Yarosh D, Bucana C, Cox P, Alas L, Kibitel J, Kripke M (1994) Localization of liposomes containing a DNA repair enzyme in murine skin. J Invest Dermatol 103:461–468

    Article  PubMed  CAS  Google Scholar 

  • Yarosh D, Klein J, Kibitel J, Alas L, O’Connor A, Cummings B, Grob D, Gerstein D, Gilchrest BA, Ichihashi M, Ogoshi M, Ueda M, Fernandez V, Chadwick C, Potten CS, Proby CM, Young AR, Hawk JL (1996) Enzyme therapy of xeroderma pigmentosum: safety and efficacy testing of T4N5 liposome lotion containing a prokaryotic DNA repair enzyme. Photodermatol Photoimmunol Photomed 12:122–130

    PubMed  CAS  Google Scholar 

  • Yarosh D, Klein J, O’Connor A, Hawk J, Rafal E, Wolf P (2001) Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomised study. Xeroderma Pigmentosum Study Group. Lancet 357:926–929

    Article  PubMed  CAS  Google Scholar 

  • Yarosh D, Tsimis J, Yee V (1992b) Enhancement of DNA repair of UVR damage in mouse and human skin by liposomes containing a DNA repair enzyme. J Soc Cosmet Chem 41:85–92

    Google Scholar 

  • Yarosh DB (2001) Liposomes in investigative dermatology. Photodermatol Photoimmunol Photomed 17:203–212

    Article  PubMed  CAS  Google Scholar 

  • Yarosh DB (2004) DNA repair, immunosuppression, and skin cancer. Cutis 74:10–13

    PubMed  Google Scholar 

  • Yuasa M, Masutani C, Eki T, Hanaoka F (2000) Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene. Oncogene 19:4721–4728

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D.L. and S.E. are supported by the Deutsche Forschungsgemeinschaft DFG (GRK 1034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Emmert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibeling, D., Laspe, P. & Emmert, S. Nucleotide excision repair and cancer. J Mol Hist 37, 225–238 (2006). https://doi.org/10.1007/s10735-006-9041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-006-9041-x

Keywords

Navigation