Skip to main content

Xeroderma Pigmentosum and the DNA Damage Response to Ultraviolet Light

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

The DNA damage response restores DNA integrity and protects against genomic instability that can lead to cancer. The human disease xeroderma pigmentosum (XP) is a prime example of disorders affecting several stages of the damage response: nucleotide excision repair (NER), transcription, and DNA replication. NER repairs damage in the form of large modifications to nucleotides such as pyrimidine dimers from UV light, DNA adducts from carcinogenic chemicals, and some oxidative products. NER replaces the damage with a 27–29 nucleotide patch by a combination of damage recognition, verification, DNA unwinding, 3′ and 5′ cleavage, and DNA replication. Two main pathways can be distinguished: (1) global repair in which initial damage recognition occurs through dedicated proteins XPC/HR23B and XPE (DDB1/DDB2), and (2) transcription-coupled repair (TCR) in which damage recognition occurs as a result of RNA pol II arrest. Two proteins dedicated to TCR, CSA and CSB, are required for RNA pol II ubiquitination and are mutated in the sun-sensitive neurodegenerative disease Cockayne syndrome (CS). Overlap of NER with repair of oxidative damage may be responsible for the neural degeneration in CS and some XP groups. DNA damage blocks the replicative polymerases alpha, delta, and epsilon and is replicated by damage-specific polymerases, mainly Pol eta and Pol iota of the class Y low fidelity polymerases. NER is vitally important for protection against solar-induced damage that can lead to immunosuppression and skin cancer, including melanoma. Polymorphisms in NER genes have been associated with a range of other human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraemer KH, Lee MM, Scotto J. DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis. 1984;5:511–4.

    Article  CAS  PubMed  Google Scholar 

  2. Bootsma D, Kraemer KH, Cleaver JE, Hoeijmakers JHJ. Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 1998. p. 245–74.

    Google Scholar 

  3. Hirai Y, Kodama Y, Moriwaki S, et al. Heterozygous individuals bearing a founder mutation in the XPA DNA repair gene comprise nearly 1% of the Japanese population. Mutat Res. 2006;60:171–8.

    Article  CAS  Google Scholar 

  4. Cleaver JE. Defective repair replication in xeroderma pigmentosum. Nature. 1968;218:652–6.

    Article  CAS  PubMed  Google Scholar 

  5. Cleaver JE, Crowley E. UV damage. DNA repair and skin carcinogenesis. Front Biosci. 2002;7:d1024–43.

    CAS  PubMed  Google Scholar 

  6. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.

    Article  CAS  PubMed  Google Scholar 

  7. Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum: cutaneous, ocular and neurological abnormalities in 830 published cases. Arch Dermatol. 1987;123:241–50.

    Article  CAS  PubMed  Google Scholar 

  8. Friedberg EC, Meira LB, Cheo DL. Database of mouse strains carrying targeted mutations in genes affecting cellular responses of DNA damage. Version 2. Mutat Res. 1998;407:217–26.

    Article  CAS  PubMed  Google Scholar 

  9. Itoh T, Cado D, Kamide R, Linn S. DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen. Proc Natl Acad Sci U S A. 2004;101:2052–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheo DL, Meira LB, Burns DK, et al. Ultraviolet B radiation-induced skin cancer in mice defective in the Xpc, Trp53, and Apex (HAP1) genes: genotype-specific effects on cancer predisposition and pathology of tumors. Cancer Res. 2000;60:1580–4.

    CAS  PubMed  Google Scholar 

  11. Lin Q, Clark A, McCulloch S, et al. Increased susceptibility to ultraviolet-induced skin carcinogenesis in polymerase eta-deficient mice. Cancer Res. 2005;66:87–94.

    Article  CAS  Google Scholar 

  12. Nance MA, Berry SA. Cockayne syndrome: review of 140 cases. Am J Med Genet. 1992;42:68–84.

    Article  CAS  PubMed  Google Scholar 

  13. Leech RW, Brumback RA, Miller RH, et al. Cockayne syndrome: clinicopathologic and tissue culture studies of affected siblings. J Neuropathol Exp Neurol. 1985;44:507–19.

    Article  CAS  PubMed  Google Scholar 

  14. Horibata K, Iwamoto Y, Kuraoka I, et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc Natl Acad Sci U S A. 2004;101:15410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cleaver JE, Charles WC, McDowell M, Karentz D, Thomas GH. Are eight xeroderma pigmentosum groups (A-G, V) and two Cockayne syndrome groups (A, B) the whole story in DNA repair? In: Bohr VA, Wasserman K, Kraemer KH, editors. DNA repair mechanisms. Copenhagen: Munksgaard; 1992. p. 56–67.

    Google Scholar 

  16. Fujiwara Y, Ichihashi M, Kano Y, Goto K, Shimuzu K. A new human photosensitive subject with a defect in the recovery of DNA synthesis after ultraviolet-light irradiation. J Invest Dermatol. 1981;77:256–63.

    Article  CAS  PubMed  Google Scholar 

  17. Itoh T, Ono T, Yamaizumi M. A new UV-sensitive syndrome not belonging to xeroderma pigmentosum or Cockayne syndrome: siblings showing biochemical characteristics of Cockayne syndrome without typical clinical manifestations. Mutat Res. 1994;314:233–48.

    Article  CAS  PubMed  Google Scholar 

  18. Itoh T, Fujiwara Y, Ono T, Yamaizumi M. UVs syndrome, a new general category of photosensitive disorder with defective DNA repair, is distinct from xeroderma pigmentosum variant and rodent complementation group I. Am J Hum Genet. 1995;56:1267–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Del Biglio MR, Greenberg CR, Rorke LB, et al. Neuropathological findings in eight children with cerebro-facio-skeletal (COFS) syndrome. J Neuropathol Exp Neurol. 1997;56:1147–57.

    Article  Google Scholar 

  20. Graham JMJ, Anyane-Yeboa K, Raams A, et al. Cerebro-oculo-facio-skeletal syndrome with a nucleotide excision-repair defect and a mutated XPD gene, with prenatal diagnosis in a triplet pregnancy. Am J Hum Genet. 2001;69:291–300.

    Article  CAS  PubMed  Google Scholar 

  21. Jaspers NG, Raams A, Silengo MC, et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet. 2007;80:457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science. 2001;291:1284–9.

    Article  CAS  PubMed  Google Scholar 

  23. Bohr VA, Sander M, Kraemer KH. Rare diseases provide rare insights into nucleotide excision repair, transcription-coupled repair, TFIIH, aging and cancer. DNA Repair (Amst). 2004;4:293–302.

    Article  CAS  Google Scholar 

  24. Licht CL, Stevnser T, Bohr VA. Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet. 2003;73:1217–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Itin PH, Sarasin A, Pittelkow MR. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol. 2001;44:891–920.

    Article  CAS  PubMed  Google Scholar 

  26. de Boer J, de Wit J, van Steeg H, et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol Cell. 1998;1:981–90.

    Article  PubMed  Google Scholar 

  27. De Vries A, van Ostrom CTM, Hofhuis FMA, et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature. 1995;377:169–73.

    Article  PubMed  Google Scholar 

  28. Murai M, Enokido Y, Inamura N, et al. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syndrome Group B DNA repair genes. Proc Natl Acad Sci U S A. 2001;98:13379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dolle ME, Busuttil RA, Garcia AM, et al. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat Res. 2006;596:22–35.

    Article  CAS  PubMed  Google Scholar 

  30. de Boer J, Donker I, de Wit J, Hoeijmakers JHJ, Weeda G. Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality. Cancer Res. 1998;58:89–94.

    PubMed  Google Scholar 

  31. Niedernhofer LJ, Garinis GA, Raams A, et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature. 2006;444:1038–43.

    Article  CAS  PubMed  Google Scholar 

  32. Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.

    Article  CAS  PubMed  Google Scholar 

  33. Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bielas JH, Loeb KR, Rubin BP, True LD, Loeb LA. Human cancers express a mutator phenotype. Proc Natl Acad Sci U S A. 2006;103:18238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loeb L. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 1991;51:3075–9.

    CAS  PubMed  Google Scholar 

  36. Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463:191–6.

    Article  CAS  PubMed  Google Scholar 

  37. Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem. 2001;276:47759–62.

    Article  CAS  PubMed  Google Scholar 

  38. Stiff T, O'Driscoll M, Rief N, et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004;64:2390–6.

    Article  CAS  PubMed  Google Scholar 

  39. Cha RS, Kleckner N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science. 2002;297:602–6.

    Article  CAS  PubMed  Google Scholar 

  40. Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: partners in checkpoint signaling. Science. 2001;294:1713–6.

    Article  CAS  PubMed  Google Scholar 

  41. Heffernan TP, Simpson DA, Frank AR, et al. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol. 2002;22:8552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shechter D, Costanzo V, Gautier J. Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst). 2004;3:901–8.

    Article  CAS  Google Scholar 

  43. Cliby WA, Lewis KA, Lilly KK, Kaufmann SH. S phase and G2 arrests induced by topoisomerase I poisons are dependent on ATR kinase function. J Biol Chem. 2002;277:1599–606.

    Article  CAS  PubMed  Google Scholar 

  44. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lowndes NF, Toh GW-L. DNA repair: the importance of phosphorylating histone H2AX. Curr Biol. 2005;15:R99–102.

    Article  CAS  PubMed  Google Scholar 

  46. Foster ER, Downes JA. Histine H2A phosphorylation in DNA double strand break repair. FEBS J. 2005;272:3231–40.

    Article  CAS  PubMed  Google Scholar 

  47. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science. 2010;330:517–21.

    Article  CAS  PubMed  Google Scholar 

  48. Hurley PJ, Bunz F. ATM and ATR components of an integrated circuit. Cell Cycle. 2007;6:414–7.

    Article  CAS  PubMed  Google Scholar 

  49. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.

    Article  CAS  PubMed  Google Scholar 

  50. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001;15:2177–96.

    Article  CAS  PubMed  Google Scholar 

  51. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434:605–11.

    Article  CAS  PubMed  Google Scholar 

  52. Shiloh Y. ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev. 2001;11:71–7.

    Article  CAS  PubMed  Google Scholar 

  53. Brown RJ, Baltimore D. ATR dusruption leads to chromosomal fragmentation and early embryonic lethality. Gene Dev. 2000;14:397–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu Y, Ashley T, Brainerd EE, et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects and thymic lymphoma. Gene Dev. 1996;10:2411–22.

    Article  CAS  PubMed  Google Scholar 

  55. Domon M, Rauth AM. Effects of caffeine on ultraviolet irradiated mouse L cells. Radiat Res. 1969;39:207–21.

    Article  CAS  PubMed  Google Scholar 

  56. Sarkaria JN, Busby EC, Tibbetts RS, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999;59:4375–82.

    CAS  PubMed  Google Scholar 

  57. Heffernan TP, Kawasumi M, Blasina A, et al. ATR-Chk1 pathway inhibition promotes apoptosis after UV treatment in primary human keratinocytes: potential basis for the UV protective effects of caffeine. J Invest Dermatol. 2009;129:1805–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boyne MT, Pesavento JJ, Mizzen CA, Kelleher NL. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J Proteome Res. 2006;5:248–53.

    Article  CAS  PubMed  Google Scholar 

  59. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  CAS  PubMed  Google Scholar 

  60. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146:905–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li A, Eirin-Lopez JM, Ausio J. H2AX: tailoring histone H2A for chromatin-dependent genomic integrity. Biochem Cell Biol. 2005;83:505–15.

    Article  CAS  PubMed  Google Scholar 

  62. Fernandez-Capetillo O, Chen H-T, Celeste A, et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol. 2002;4:993–7.

    Article  CAS  PubMed  Google Scholar 

  63. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 2003;5:675–9.

    Article  CAS  PubMed  Google Scholar 

  64. Maher VM, Dorney DJ, Mendrake AL, Konze-Thomas B, McCormick JJ. DNA excision repair processes in human cells can eliminate the cytotoxic and mutagenic consequences of ultraviolet irradiation. Mutat Res. 1979;62:311–23.

    Article  CAS  PubMed  Google Scholar 

  65. Marini F, Nardo T, Giannattasio M, et al. DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proc Natl Acad Sci U S A. 2006;103:17325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marti TM, Hefner E, Feeney L, Natale V, Cleaver JE. H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double strand breaks. Proc Natl Acad Sci U S A. 2006;103:9891–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX. Science. 2002;296:922–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Despras E, Daboussi F, Hyrien O, Marheineke K, Kannouche PL. ATR/Chk1 pathway is essential for resumption of DNA synthesis and cell survival in UV-irradiated XP variant cells. Hum Mol Genet. 2010;19:1690–701.

    Article  CAS  PubMed  Google Scholar 

  69. Lehmann AR, Kirk-Bell S, Arlett CA, et al. Xeroderma pigmentosum cells with normal levels of excision repair have a defect on DNA synthesis after UV-irradiation. Proc Natl Acad Sci U S A. 1975;72:219–35.

    Article  CAS  PubMed  Google Scholar 

  70. Lehmann AR. Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J Mol Biol. 1972;66:319–37.

    Article  CAS  PubMed  Google Scholar 

  71. Cordeiro-stone M, Makhov AM, Zaritskaya LS, Griffith JD. Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand. J Mol Biol. 1999;289:1207–18.

    Article  CAS  PubMed  Google Scholar 

  72. Cordeiro-Stone M, Zaritskaya LS, Price LK, Kaufmann WK. Replication fork bypass of a pyrimidine dimer blocking leading strand DNA synthesis. J Biol Chem. 1997;272:13945–54.

    Article  CAS  PubMed  Google Scholar 

  73. You Z, Kong L, Newport J. The role of single-stranded DNA and polymerase alpha in establishing the ATR, Hus1 DNA replication checkpoint. J Biol Chem. 2002;277:27088–93.

    Article  CAS  PubMed  Google Scholar 

  74. Thakur M, Wernick M, Collins C, et al. DNA polymerase h undergoes alternative splicing, protects against UV sensitivity and apoptosis, and suppresses Mre11-dependent recombination. Genes Chromosomes Cancer. 2001;32:222–35.

    Article  CAS  PubMed  Google Scholar 

  75. Kannouche P, Fernandez de Henestrosa AR, Coull B, et al. Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J. 2003;22:1223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kannouche PL, Wing J, Lehmann AR. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell. 2004;14:491–500.

    Article  CAS  PubMed  Google Scholar 

  77. Huang TT, Nijman SM, Mirchandani KD, et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol. 2006;8:339–47.

    CAS  PubMed  Google Scholar 

  78. de Feraudy S, Revet I, Bezrookove V, Feeney L, Cleaver JE. A minority of foci or pan-nuclear apoptotic staining of gH2AX in the S phase after UV damage contain DNA double strand breaks. Proc Natl Acad Sci U S A. 2010;107:6870–5.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Limoli CL, Giedzinski E, Cleaver JE. Alternative recombination pathways in UV-irradiated XP Variant cells. Oncogene. 2005;24:3708–14.

    Article  CAS  PubMed  Google Scholar 

  80. Kratz K, Schöpf B, Kaden S, et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell. 2010;142:77–88.

    Article  CAS  PubMed  Google Scholar 

  81. Limoli CL, Giedzinski E, Bonner WM, Cleaver JE. UV-induced replication arrest in the xeroderma pigmentosum variant leads to double strand breaks, g-H2Ax formation, and Mre11 relocalization. Proc Natl Acad Sci U S A. 2002;99:233–8.

    Article  CAS  PubMed  Google Scholar 

  82. de Feraudy S, Limoli CL, Giedzinski E, et al. Pol η is required for DNA replication during nucleotide deprivation by hydroxyurea. Oncogene. 2007;26:5713–21.

    Article  PubMed  CAS  Google Scholar 

  83. Cleaver JE, Afzal V, Feeney L, et al. Increased UV sensitivity and chromosomal instability related to p53 function in the xeroderma pigmentosum variant. Cancer Res. 1999;59:1102–8.

    CAS  PubMed  Google Scholar 

  84. Cleaver JE, Mitchell DL. Ultraviolet radiation carcinogenesis. In: Kufe DW et al., editors. Cancer medicine. Hamilton, ON: BC Deckker Inc.; 2006. p. 283–91.

    Google Scholar 

  85. Mouret S, Baudouin C, Charveron M, et al. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci U S A. 2006;103:13765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jen J, Mitchell DL, Cunningham RP, et al. Ultraviolet irradiation produces novel endonuclease III-sensitive cytosine photoproducts at dipyrimidine sites. Photochem Photobiol. 1997;65:323–9.

    Article  CAS  PubMed  Google Scholar 

  87. Mitchell DL, Jen J, Cleaver JE. Relative induction of cyclobutane dimers and cytosine photohydrates in DNA irradiated in vitro and in vivo with ultraviolet C and ultraviolet B light. Photochem Photobiol. 1991;54:741–6.

    Article  CAS  PubMed  Google Scholar 

  88. Mitchell DL, Jen J, Cleaver JE. Sequence specificity of cyclobutane pyrimidine dimers in DNA treated with solar (ultraviolet B) radiation. Nucleic Acids Res. 1992;20:225–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang JC, Hsu DS, Kazantsev A, Sancar A. Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc Natl Acad Sci U S A. 1994;91:12213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen RH, Maher VM, McCormick JJ. Effect of excision repair by diploid human fibroblasts on the kinds and locations of mutations induced by (+/−)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in the coding region of the HPRT gene. Proc Natl Acad Sci U S A. 1990;87:8680–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bomgarden RD, Lupardus PJ, Soni DV, et al. Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. EMBO J. 2006;25:2605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wood RD. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie. 1999;81:39–44.

    Article  CAS  PubMed  Google Scholar 

  93. Mellon I, Bohr VM, Hanawalt PC. Preferential repair of an active gene in human cells. Proc Natl Acad Sci U S A. 1986;83:8878–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mellon I, Spivak G, Hanawalt PC. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987;51:241–9.

    Article  CAS  PubMed  Google Scholar 

  95. Mellon I, Rajpal DK, Koi M, Boland CR, Champe GN. Transcription-coupled repair deficiency and mutations in mismatch repair genes. Science. 1996;272:557–60.

    Article  CAS  PubMed  Google Scholar 

  96. Bohr VA. Gene specific DNA repair. Carcinogenesis. 1991;12:1983–92.

    Article  CAS  PubMed  Google Scholar 

  97. Hanawalt PC. Transcription-coupled repair and human disease. Science. 1994;266:1957–8.

    Article  CAS  PubMed  Google Scholar 

  98. Wang H, Zhai L, Xu J, et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell. 2006;22:383–94.

    Article  PubMed  CAS  Google Scholar 

  99. Sancar A. Mechanisms of DNA excision repair. Science. 1994;266:1954–6.

    Article  CAS  PubMed  Google Scholar 

  100. Wakasugi M, Sancar A. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc Natl Acad Sci U S A. 1998;95:6669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Araujo SJ, Tirode F, Coin F, et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Gene Dev. 2000;14:349–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang XW, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet. 1995;10:188–95.

    Article  CAS  PubMed  Google Scholar 

  103. Wang XW, Vermeulen W, Coursen JD, et al. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Gene Dev. 1996;10:1219–32.

    Article  CAS  PubMed  Google Scholar 

  104. Nichols AF, Itoh T, Graham JA, et al. Human damage-specific DNA binding protein p48. Characterization of XPE mutations and regulation following UV irradiation. J Biol Chem. 2001;275:21422–8.

    Article  Google Scholar 

  105. Tan T, Chu G. p53 Binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Mol Cell Biol. 2002;22:3247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genome repair. Proc Natl Acad Sci U S A. 1999;96:424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Volker M, Mone MJ, Karmakar P, et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell. 2001;8:213–24.

    Article  CAS  PubMed  Google Scholar 

  108. Houtsmuller AB, Rademakers S, Nigg AL, et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science. 1999;284:958–61.

    Article  CAS  PubMed  Google Scholar 

  109. Araujo SJ, Nigg EA, Wood RD. Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol. 2001;21:2281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Reardon JT, Sancar A. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev. 2003;17:2539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zelle B, Lohman PH. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G. Mutat Res. 1979;62:363–8.

    Article  CAS  PubMed  Google Scholar 

  112. Schrofelbauer B, Hakata Y, Landau NR. HIV-1 Vpr function is mediated by interaction with the damage-specific DNA-binding protein DDB1. Proc Natl Acad Sci U S A. 2007;104:4130–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Itoh T, Linn S, Ono T, Yamaizumi M. Reinvestigation of the classification of five cell strains of xeroderma pigmentosum group E with reclassification of three of them. J Invest Dermatol. 2000;114:1022–9.

    Article  CAS  PubMed  Google Scholar 

  114. Chu G, Chang E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science. 1988;242:564–7.

    Article  CAS  PubMed  Google Scholar 

  115. Keeney S, Chang GJ, Linn S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem. 1993;268:21293–300.

    CAS  PubMed  Google Scholar 

  116. Hwang BJ, Toering S, Francke U, Chu G. p48 Activates a UV-damaged-DNA binding factor and is defective in xeroderma pigmentosum group E cells that lack binding activity. Mol Cell Biol. 1998;18:4391–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Itoh T, Linn S. XP43TO, previously classified as xeroderma pigmentosum Group E, should be reclassified as xeroderma pigmentosum variant. J Invest Dermatol. 2001;117:1672–4.

    Article  CAS  PubMed  Google Scholar 

  118. Tang JY, Hwang BJ, Ford JM, Hanawalt PC, Chu G. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell. 2000;5:737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Itoh T, O'Shea C, Linn S. Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48(DDB2) and p53. Mol Cell Biol. 2003;23:7540–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Itoh T, Nichols A, Linn S. Abnomal regulation of DBB2 gene expression in xeroderma pigmentosum group E strains. Oncogene. 2001;20:7041–50.

    Article  CAS  PubMed  Google Scholar 

  121. Reardon JT, Nichols AF, Keeney S, et al. Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition binding protein (UvrA) to the major ultraviolet photoproducts: T[c, s]T, T[t, s]T, T[6-4]T, and T[Dewar]T. J Biol Chem. 1993;268:21301–8.

    CAS  PubMed  Google Scholar 

  122. Aboussekhra A, Biggerstaff M, Shivji MKK, et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995;80:859–68.

    Article  CAS  PubMed  Google Scholar 

  123. Bessho T, Sancar A, Thompson LH, Thelen MP. Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J Biol Chem. 1997;272:3833–7.

    Article  CAS  PubMed  Google Scholar 

  124. Mu D, Park CH, Matsunaga T, et al. Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem. 1995;270:2415–8.

    Article  CAS  PubMed  Google Scholar 

  125. Liu W, Nichols AF, Graham JA, et al. Nuclear transport of human DDB protein induced by ultraviolet light. J Biol Chem. 2000;275:21429–34.

    Article  CAS  PubMed  Google Scholar 

  126. Shiyanov P, Hayes SA, Donepudi M, et al. The naturally occurring mutants of DDB are impaired in stimulating nuclear import of the p125 subunit and E2F1-activated transcription. Mol Cell Biol. 1999;19:4935–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sugasawa K, Ng JMY, Masutani C, et al. Xeroderma pigmentosum group C protein complex is the initiator of global nucleotide excision repair. Mol Cell. 1998;2:223–32.

    Article  CAS  PubMed  Google Scholar 

  128. de Feraudy S, Ridd K, Richards LM, et al. The DNA damage binding protein XPC is a frequent target for inactivation in squamous cell carcinomas. Am J Pathol. 2010;177:555–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Shivji MK, Eker AP, Wood RD. DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. J Biol Chem. 1994;269:22749–57.

    CAS  PubMed  Google Scholar 

  130. Masutani C, Sugasawa K, Yanagisawa J, et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 1994;13:1831–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Maillard O, Solyom S, Naegeli H. An aromatic sensor with aversion to damaged strands confers versatility to DNA repair. PLoS Biol. 2007;5:e79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Mansbridge JN, Hanawalt PC. Domain-limited repair of DNA in ultraviolet irradiated fibroblasts from xeroderma pigmentosum complementation C. In: Friedberg EC, Bridges BR, editors. Cellular responses to DNA damage, UCLA symposium on molecular and cellular biology, new series. New York: Alan R. Liss; 1983. p. 195–207.

    Google Scholar 

  133. Karentz D, Cleaver JE. Excision repair in xeroderma pigmentosum group C but not group D is clustered in a small fraction of the total genome. Mutat Res. 1986;165:165–74.

    CAS  PubMed  Google Scholar 

  134. Kantor GJ, Barsalou LS, Hanawalt PC. Selective repair of specific chromatin domains in UV-irradiated cells from xeroderma pigmentosum. Mutat Res DNA Repair. 1990;235:171–80.

    Article  CAS  PubMed  Google Scholar 

  135. Surralles J, Ramirez MJ, Marcos R, Natarajan AT, Mullenders LH. Clusters of transcription-coupled repair in the human genome. Proc Natl Acad Sci U S A. 2002;99:10571–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Araki M, Masutani C, Takemura M, et al. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global nucleotide excision repair. J Biol Chem. 2001;276:18665–72.

    Article  CAS  PubMed  Google Scholar 

  137. Sesto A, Navarro M, Burslem F, Jorcano JL. Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays. Proc Natl Acad Sci U S A. 2002;99:2965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98:5116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fornace AJJ, Dobson PP, Kinsella TJ. Repair of gamma-ray-induced DNA base damage in xeroderma pigmentosum cells. Radiat Res. 1986;106:73–7.

    Article  CAS  PubMed  Google Scholar 

  140. Setlow RB, Faulcon FM, Regan JD. Defective repair of gamma-ray induced DNA damage in xeroderma pigmentosum cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1976;29:125–36.

    Article  CAS  PubMed  Google Scholar 

  141. Despras E, Pfeiffer P, Salles B, et al. Long-term XPC silencing reduces DNA double-strand break repair. Cancer Res. 2007;67:2526–34.

    Article  CAS  PubMed  Google Scholar 

  142. Gao S, Drouin R, Holmquist GP. DNA repair rates mapped along the human PGK-1 gene at nucleotide resolution. Science. 1994;263:1438–40.

    Article  CAS  PubMed  Google Scholar 

  143. Brueckner F, Hennecke U, Carell T, Cramer P. CPD damage recognition by transcribing RNA polymerase II. Science. 2007;315:859–62.

    Article  CAS  PubMed  Google Scholar 

  144. Lee KB, Wang D, Lippard SJ, Sharp PA. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad Sci U S A. 2002;99:4239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Venema J, Mullenders LH, Natarajan AT, Zeeland AAV, Mayne LY. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci U S A. 1990;87:4707–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lehmann AR, Kirk-Bell S, Mayne L. Abnormal kinetics of DNA synthesis in ultraviolet light-irradiated cells from patients with Cockayne syndrome. Cancer Res. 1979;39:4237–41.

    CAS  PubMed  Google Scholar 

  147. Henning KA, Li L, Iyer N, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with the CSB protein and a subunit of RNA polymerase II, TFIIH. Cell. 1995;82:555–64.

    Article  CAS  PubMed  Google Scholar 

  148. Citterio E, Rademakers S, van der Horst GT, et al. Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. J Biol Chem. 1998;273:11844–51.

    Article  CAS  PubMed  Google Scholar 

  149. Selby CP, Sancar A. Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J Biol Chem. 1997;272:1885–90.

    Article  CAS  PubMed  Google Scholar 

  150. van Gool AJ, Citterio E, Rademakers S, et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 1997;16:5955–65.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tantin D, Kansal A, Carey M. Recruitment of the putative repair coupling factor CSB/ERCC6 to RNA polymerase elongation complex. Mol Cell Biol. 1997;17:6803–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Selby CP, Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc Natl Acad Sci U S A. 1997;94:11205–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Beerens N, Hoeijmakers JH, Kanaar R, Vermeulen W, Wyman C. The CSB protein actively wraps DNA. J Biol Chem. 2005;280:4722–9.

    Article  CAS  PubMed  Google Scholar 

  154. Tu Y, Bates S, Pfeiffer GP. The transcription-repair coupling factor CSA is required for efficient repair only during the elongation stages of RNA polymerase II transcription. Mutat Res. 1998;400:143–51.

    Article  CAS  PubMed  Google Scholar 

  155. Bregman DB, Halaban R, van Gool AJ, et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc Natl Acad Sci U S A. 1996;93:11586–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schaeffer L, Roy R, Humbert S, et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science. 1993;260:58–63.

    Article  CAS  PubMed  Google Scholar 

  157. Hermanson-Miller IL, Turchi JJ. Strand-specific binding of RPA and XPA to damaged duplex DNA. Biochemistry. 2002;41:2402–8.

    Article  CAS  PubMed  Google Scholar 

  158. Wakasugi M, Sancar A. Order of assembly of human DNA repair excision nuclease. J Biol Chem. 1999;274:18759–68.

    Article  CAS  PubMed  Google Scholar 

  159. States JC, McDuffie ER, Myrand SP, McDowell M, Cleaver JE. Distribution of mutations in the human xeroderma pigmentosum group A gene and their relationships to the functional regions of the DNA damage recognition protein. Hum Mutat. 1998;12:103–13.

    Article  CAS  PubMed  Google Scholar 

  160. Coin F, Marinoni JC, Rodolfo C, et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet. 1998;20:184–8.

    Article  CAS  PubMed  Google Scholar 

  161. Coin F, Bergmann E, Tremeau-Bravard A, Egly J-M. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 1999;18:1357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Taylor EM, Broughton BC, Botta E, et al. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci U S A. 1997;94:8658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Koonin EV. Escherichia coli dinG gene encodes a putative DNA helicase related to a group of eukaryotic helicases including Rad3 protein. Nucleic Acids Res. 1993;21:1497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fan L, Fuss JO, Cheng QJ, et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell. 2008;133:789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu H, Rudolf J, Johnson KA, et al. Structure of the DNA repair helicase XPD. Cell. 2008;133:801–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hoeijmakers JHJ, Egly JM, Vermeulen W. TFIIH: a key component in multiple DNA transactions. Curr Opin Genet Dev. 1996;6:26–33.

    Article  CAS  PubMed  Google Scholar 

  167. Botta E, Nardo T, Lehmann AR, et al. Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Hum Mol Genet. 2002;11:2919–28.

    Article  CAS  PubMed  Google Scholar 

  168. Ranish JA, Hahn S, Lu Y, et al. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nat Genet. 2004;36:707–13.

    Article  CAS  PubMed  Google Scholar 

  169. Giglia-Mari G, Coin F, Ranish JA, et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet. 2004;36:714–9.

    Article  CAS  PubMed  Google Scholar 

  170. Huang JC, Sancar A. Determination of minimum substrate size for human excinuclease. J Biol Chem. 1994;269:19034–44.

    CAS  PubMed  Google Scholar 

  171. Matsunaga T, Park CH, Bessho T, Mu D, Sancar A. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem. 1996;271:11047–50.

    Article  CAS  PubMed  Google Scholar 

  172. Niedernhofer LJ, Odijk H, Budzowska M, et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol. 2004;24:5776–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lieber MR. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays. 1997;19:233–40.

    Article  CAS  PubMed  Google Scholar 

  174. Chipchase MD, Melton DW. The formation of UV-induced chromosome aberrations involves ERCC1 and XPF but not other nucleotide excision repair genes. DNA Repair (Amst). 2002;1:35–340.

    Article  Google Scholar 

  175. Zhu XD, Niedernhofer L, Kuster B, et al. ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell. 2003;12:1489–98.

    Article  CAS  PubMed  Google Scholar 

  176. Munoz P, Blanco R, Flores JM, Blasco MA. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result inpremature aging and cancer. Nat Genet. 2005;37:1063–71.

    Article  CAS  PubMed  Google Scholar 

  177. Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem. 1997;272:24552–9.

    Article  Google Scholar 

  178. Roberts JA, Bell SD, White MF. An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Mol Microbiol. 2003;48:361–71.

    Article  CAS  PubMed  Google Scholar 

  179. Sijbers AM, De Laat WL, Ariza RR, et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell. 1996;86:811–22.

    Article  CAS  PubMed  Google Scholar 

  180. Batty DP, Wood RW. Damage recognition in nucleotide excision repair of DNA. Gene. 2000;241:193–204.

    Article  CAS  PubMed  Google Scholar 

  181. Gaillard PH, Wood RD. Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res. 2001;29:872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Enzlin JH, Scharer OD. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J. 2002;21:2045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Saijo M, Kuraoka I, Masutani C, Hanoaka F, Tanaka K. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res. 1996;24:4719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Matsumura Y, Nishigori C, Yagi T, Imamura S, Takebe H. Characterization of molecular defects in xeroderma pigmentosum group F in relation to its clinically mild symptoms. Hum Mol Gen. 1998;7:969–74.

    Article  CAS  PubMed  Google Scholar 

  185. McWhir J, Selfridge J, Harrison DJ, Squires S, Melton D. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat Genet. 1993;5:217–24.

    Article  CAS  PubMed  Google Scholar 

  186. Tian M, Shinkura R, Shinkura N, Alt FW. Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol Cell Biol. 2004;24:1200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hohl M, Thorel F, Clarkson SG, Schärer OD. Structural determinants for substrate binding and catalysis by the structure-specific endonuclease XPG. J Biol Chem. 2003;278:19500–8.

    Article  CAS  PubMed  Google Scholar 

  188. Nouspikel T, Clarkson SG. Mutations that disable the DNA repair gene XPG in a xeroderma pigmentosum group G patient. Hum Mol Genet. 1994;3:963–7.

    Article  CAS  PubMed  Google Scholar 

  189. Nouspikel T, Lalle P, Leadon SA, Cooper PK, Clarkson SG. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc Natl Acad Sci U S A. 1997;94:3116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. O’Donovan A, Davies AA, Moggs JG, West SC, Wood RD. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature. 1994;371:432–5.

    Article  PubMed  Google Scholar 

  191. LePage F, Kuroh EE, Aurutskaya A, et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell. 2000;101:159–71.

    Article  CAS  Google Scholar 

  192. Davies AA, Friedberg EC, Tomkinson AE, Wood RD, West SC. Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J Biol Chem. 1995;270:24638–41.

    Article  CAS  PubMed  Google Scholar 

  193. Cooper PK, Nouspikel T, Clarkson SG, Leadon SA. Defective transcription coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science. 1997;275:990–3.

    Article  CAS  PubMed  Google Scholar 

  194. Klungland A, Hoss M, Gunz D, et al. Base excision repair of oxidative DNA damage activated by the XPG protein. Mol Cell. 1999;3:33–42.

    Article  CAS  PubMed  Google Scholar 

  195. Lee S-K, Yu S-L, Prakash L, Prakash S. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription: implications for Cockayne syndrome. Cell. 2002;109:823–34.

    Article  CAS  PubMed  Google Scholar 

  196. Wood RD. Nucleotide excision repair in mammalian cells. J Biol Chem. 1997;272:23465–8.

    Article  CAS  PubMed  Google Scholar 

  197. Cleaver JE, Thompson LH, Richardson AS, States JC. A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat. 1999;14:9–22.

    Article  CAS  PubMed  Google Scholar 

  198. Qiao Y, Spitz MR, Shen H, et al. Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis. 2002;23:295–9.

    Article  CAS  PubMed  Google Scholar 

  199. Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Canc Epidemiol Biomarkers Prev. 2002;11:1513–30.

    CAS  Google Scholar 

  200. Hu JJ, Mohrenweiser HW, Bell DA, Leadon SA, Miller MS. Symposium overview: genetic polymorphisms in DNA repair and cancer risk. Toxicol Appl Pharmacol. 2002;185:64–73.

    Article  CAS  PubMed  Google Scholar 

  201. Matakidou A, Eisen T, Fleischmann C, et al. Evaluation of xeroderma pigmentosum XPA, XPC, XPD, XPF, XPB, XPG and DDB2 genes in familial early-onset lung cancer predisposition. Int J Cancer. 2006;119:964–7.

    Article  CAS  PubMed  Google Scholar 

  202. Mohrenweiser HW, Jones IM. Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat Res. 1998;400:15–24.

    Article  CAS  PubMed  Google Scholar 

  203. Spitz MR, Wu X, Wang Y, et al. Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res. 2001;61(4):1354–7.

    CAS  PubMed  Google Scholar 

  204. Steitz TA. DNA polymerases: structural diversity and common mechanisms. J Biol Chem. 1999;274:17395–8.

    Article  CAS  PubMed  Google Scholar 

  205. Brash DE, Rudolph JA, Simon JA, et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A. 1991;88:10124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ohmori H, Friedberg EC, Fuchs RPP, et al. The Y-family of DNA polymerases. Mol Cell. 2001;8:7–8.

    Article  CAS  PubMed  Google Scholar 

  207. Cleaver JE. Stopping DNA replication in its tracks. Science. 1999;285:212–3.

    Article  CAS  PubMed  Google Scholar 

  208. Trincao J, Johnson RE, Escalante CR, et al. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion synthesis. Mol Cell. 2001;8:417–26.

    Article  CAS  PubMed  Google Scholar 

  209. Johnson RE, Washington MT, Prakash S, Prakash L. Fidelity of human DNA polymerase η. J Biol Chem. 2000;275:7447–50.

    Article  CAS  PubMed  Google Scholar 

  210. Matsuda T, Bebenek K, Masutani C, Hanoaka F, Kunkel TA. Low fidelity DNA synthesis by human DNA polymerase eta. Nature. 2000;404:1011–3.

    Article  CAS  PubMed  Google Scholar 

  211. Woodgate R. Evolution of the two-step model for UV-mutagenesis. Mutat Res. 2001;485:83–92.

    Article  CAS  PubMed  Google Scholar 

  212. Kannouche P, Broughton BC, Volker M, et al. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Gene Dev. 2001;15:158–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Haracska L, Kondratick CM, Unk I, Prakash S, Prakash L. Interaction with PCNA is essential for yeast DNA polymerase h function. Mol Cell. 2001;8:407–15.

    Article  CAS  PubMed  Google Scholar 

  214. Friedberg EC, Walker G, Siede W. DNA repair and mutagenesis. Washington, DC: ASM Press; 1995.

    Google Scholar 

  215. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 2002;419:135–41.

    Article  CAS  PubMed  Google Scholar 

  216. Ogi T, Kannouche P, Lehmann AR. Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci. J Cell Sci. 2005;118:129–36.

    Article  CAS  PubMed  Google Scholar 

  217. Yavuz S, Yavuz AS, Kraemer KH, Lipsky PE. The role of polymerase eta in somatic hypermutation determined by analysis of mutations in a patient with xeroderma pigmentosum variant. J Immunol. 2002;169:3825–30.

    Article  CAS  PubMed  Google Scholar 

  218. Delbos F, De Smet A, Ahmad Faili A, et al. Contribution of DNA polymerase η to immunoglobulin gene hypermutation in the mouse. J Exp Med. 2005;201:1191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Franklin A, Milburn PJ, Blanden RV, Steele EJ. Human DNA polymerase eta, an A-T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase. Immunol Cell Biol. 2004;82:219–25.

    Article  CAS  PubMed  Google Scholar 

  220. Zeng X, Negrete GA, Kasmer C, Yang WW, Gearhart PJ. Absence of DNA polymerase eta reveals targeting of C mutations on the nontranscribed strand in immunoglobulin switch regions. J Exp Med. 2004;199:917–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Delbos F, Aoufouchi S, Faili A, Weill JC, Reynaud CA. DNA polymerase eta is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse. J Exp Med. 2007;204:17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mayorov VI, Rogozin I, Adkison LR, Gearhart PJ. DNA polymerase eta contributes to strand bias of mutations of A versus T in immunoglobulin genes. J Immunol. 2005;174:7781–6.

    Article  CAS  PubMed  Google Scholar 

  223. Martomo SA, Yang WW, Wersto RP, et al. Different mutation signatures in DNA polymerase eta- and MSH6-deficient mice suggest separate roles in antibody diversification. Proc Natl Acad Sci U S A. 2005;102:8656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Faili A, Aoufouchi S, Weller S, et al. DNA polymerase eta is involved in hypermutation occurring during immunoglobulin class switch recombination. J Exp Med. 2004;199:265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Pavlov YI, Rogozin IB, Galkin AP, et al. Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase eta during copying of a mouse immunoglobulin kappa light chain transgene. Proc Natl Acad Sci U S A. 2002;99:9954–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kawamoto T, Araki K, Sonoda E, et al. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell. 2005;20:793–9.

    Article  CAS  PubMed  Google Scholar 

  227. McIlwraith MJ, Vaisman A, Liu Y, et al. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell. 2005;20:783–92.

    Article  CAS  PubMed  Google Scholar 

  228. Faili A, Aoufouchi S, Flatter E, et al. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature. 2002;419:944–7.

    Article  CAS  PubMed  Google Scholar 

  229. Masuda K, Ouchida R, Takeuchi A, et al. DNA polymerase theta contributes to the generation of C/G mutations during somatic hypermutation of Ig genes. Proc Natl Acad Sci U S A. 2005;102:13986–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Wilson TM, Vaisman A, Martomo SA, et al. MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. J Exp Med. 2005;201:637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Limoli CL, Giedzinski E, Morgan WF, Cleaver JE. Polymerase η deficiency in the XP variant uncovers an overlap between the S phase checkpoint and double strand break repair. Proc Natl Acad Sci U S A. 2000;97:7939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Myung K, Kolodner RD. Suppression of genomic instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2002;99:4500–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cleaver JE, Bartholomew J, Char S, et al. Polymerase η and p53 jointly regulate cell survival, apoptosis and Mre11 recombination during S phase checkpoint arrest after UV irradiation. DNA Repair. 2002;3:1–17.

    Google Scholar 

  234. Petrini JHJ. The mammalian Mre11-rad50-Nbs1 protein complex: integration of functions in the mammalian cellular DNA-damage response. Am J Hum Genet. 1999;64:1264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Cleaver JE. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer. 2005;5:564–73.

    Article  CAS  PubMed  Google Scholar 

  236. de Waard H, de Wit J, Andressoo JO, et al. Different effects of CSA and CSB deficiency on sensitivity to oxidative damage. Mol Cell Biol. 2004;24:7941–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Osterod M, Larsen E, Le Page F, et al. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Oncogene. 2002;21:8232–9.

    Article  CAS  PubMed  Google Scholar 

  238. Spivak G, Hanawalt PC. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair (Amst). 2006;5:13–22.

    Article  CAS  Google Scholar 

  239. D'Errico M, Parlanti E, Teson M, et al. The role of CSA in the response to oxidative DNA damage in human cells. Oncogene. 2007;26:4336–43.

    Article  PubMed  CAS  Google Scholar 

  240. Otsuka F, Robbins JH. The Cockayne syndrome—an inherited multisystem disorder with cutaneous photosensitivity and defective repair of DNA. Comparison with xeroderma pigmentosum. Am J Dermatopathol. 1985;7:387–92.

    Article  CAS  PubMed  Google Scholar 

  241. Check E. Retracted papers damage work on DNA repair. Nature. 2005;435:1015.

    Article  CAS  PubMed  Google Scholar 

  242. Tuo J, Jaruga P, Rodriguez H, Bohr VA, Dizdaroglu M. Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. FASEB J. 2003;17:668–74.

    Google Scholar 

  243. de Waard H, de Wit J, Gorgels TG, et al. Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair (Amst). 2003;2:13–25.

    Article  Google Scholar 

  244. Fonnum F, Lock EA. Cerebellum as a target for toxic substances. Toxicol Lett. 2000;112–113:9–16.

    Article  PubMed  Google Scholar 

  245. Fonnum F, Lock EA. The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: exemplified with toxic effects on cerebellar granule cells. J Neurosci. 2004;88:513–31.

    CAS  Google Scholar 

  246. Welsh JP, Yuen G, Placantonakis DG, et al. Why do Purkinje cells die os easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol. 2002;89:331–59.

    PubMed  Google Scholar 

  247. Chen P, Peng C, Luff J, et al. Oxidative stress is responsible for deficient survival and dendritogenesis in purkinje neurons from ataxia-telangiectasia mutated mutant mice. J Neurosci Res. 2003;23:11453–60.

    CAS  Google Scholar 

  248. Liu K, Akula JD, Falk C, Hansen RM, Fulton AB. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2006;47:2639–47.

    Article  PubMed  Google Scholar 

  249. Barlow C, Dennery PA, Shigenaga MK, et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc Natl Acad Sci U S A. 1999;96:9915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Goldbaum O, Richter-Landsberg C. Proteolytic stress causes heat shock protein induction, tau ubiquitination, and the recruitment of ubiquitin to tau-positive aggregates in oligodendrocytes in culture. J Neurosci. 2004;24:5748–57.

    Article  CAS  PubMed  Google Scholar 

  251. Hayashi M, Itoh M, Araki S, et al. Oxidative stress and disturbed glutamate transport in hereditary nucleotide repair disorders. J Neuropathol Exp Neurol. 2001;60:350–6.

    Article  CAS  PubMed  Google Scholar 

  252. Hayashi M, Araki S, Kohyama J, Shioda K, Fukatsu R. Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome. Brain Dev. 2005;27:34–8.

    Article  PubMed  Google Scholar 

  253. Kohji T, Hayashi M, Shioda K, et al. Cerebellar neurodegeneration in human hereditary DNA repair disorders. Neurosci Lett. 1998;243:133–8.

    Article  CAS  PubMed  Google Scholar 

  254. Hayashi M. Apoptotic cell death in child-onset neurodegenerative disorders. No To Hattatsu. 1999;31:146–52.

    CAS  PubMed  Google Scholar 

  255. Laugel V, Dalloz C, Stary A, et al. Deletion of 5′ sequences of the CSB gene provides insight into the pathophysiology of Cockayne syndrome. Eur J Hum Genet. 2008;16:320–7.

    Article  CAS  PubMed  Google Scholar 

  256. Laugel V, Dalloz C, Tobias ES, et al. COFS syndrome: three additional cases with CSB mutations, new diagnostic criteria and an approach to investigation. J Med Genet. 2008;45:564–71.

    Article  CAS  PubMed  Google Scholar 

  257. Newman JC, Bailey AD, Fan HY, Pavelitz T, Weiner AM. An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet. 2008;4:e1000031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. van der Horst GT, van Steeg H, Berg RJ, et al. Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell. 1997;89:425–35.

    Article  PubMed  Google Scholar 

  259. van der Horst GT, Meira L, Gorgels TG, et al. UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair. 2002;1:143–57.

    Article  PubMed  Google Scholar 

  260. Berg RJ, Rebel H, van der Horst GT, et al. Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice. Cancer Res. 2000;60:2858–63.

    CAS  PubMed  Google Scholar 

  261. Wijnhoven SW, Kool HJ, van Oostrom CT, et al. The relationship between benzo[a]pyrene-induced mutagenesis and carcinogenesis in repair-deficient Cockayne syndrome group B mice. Cancer Res. 2000;60:5681–7.

    CAS  PubMed  Google Scholar 

  262. Wijnhoven SW, Kool HJ, Mullenders LH, et al. DMBA-induced toxic and mutagenic responses vary dramatically between NER-deficient Xpa, Xpc and Csb mice. Carcinogenesis. 2001;22:1099–106.

    Article  CAS  PubMed  Google Scholar 

  263. de Boer J, Andressoo JO, de Wit J, et al. Premature aging in mice deficient in DNA repair and transcription. Science. 2002;296:1276–9.

    Article  PubMed  Google Scholar 

  264. Shiomi N, Mori M, Kito S, et al. Severe growth retardation and short life-span of double mutant mice lacking Xpa and exon 15 of Xpg. DNA Repair (Amst). 2005;4:351–7.

    Article  CAS  Google Scholar 

  265. Laposa RR, Huang EJ, Cleaver JE. Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice. Proc Natl Acad Sci U S A. 2007;104:1389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Sun XZ, Harada YN, Takahashi S, Shiomi N, Shiomi T. Purkinje cell degeneration in mice lacking the xeroderma pigmentosum group G gene. J Neurosci Res. 2001;64:348–54.

    Article  CAS  PubMed  Google Scholar 

  267. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.

    Article  CAS  PubMed  Google Scholar 

  268. Olanow CW. An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol. 1992;32:S2–9.

    Article  CAS  PubMed  Google Scholar 

  269. Kruman I. Why do neurons enter the cell cycle? Cell Cycle. 2004;3:769–73.

    Article  CAS  PubMed  Google Scholar 

  270. McMurray CT. To die or not to die: DNA repair in neurons. Mutat Res. 2005;577:260–74.

    Article  CAS  PubMed  Google Scholar 

  271. Trapp C, Reite K, Klungland A, Epe B. Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice. Oncogene. 2007;26:4044–8.

    Article  CAS  PubMed  Google Scholar 

  272. El-Mahdy MA, Zhu Q, Wang QE, et al. Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC. J Biol Chem. 2006;281:13404–11.

    Article  CAS  PubMed  Google Scholar 

  273. Groisman R, Polanowska J, Kuraoka I, et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 2003;113:357–67.

    Article  CAS  PubMed  Google Scholar 

  274. Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40:427–46.

    Article  CAS  PubMed  Google Scholar 

  275. Shiomi N, Kito S, Oyama M, et al. Identification of the XPG region that causes the onset of Cockayne syndrome by using Xpg mutant mice generated by the cDNA-mediated knock-in method. Mol Cell Biol. 2004;24:3712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. van der Pluijm I, Garinis GA, Brandt RM, et al. Impaired genome maintenance suppresses the growth hormone—insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol. 2006;5:e2.

    Article  PubMed Central  CAS  Google Scholar 

  277. Bastien J, Adam-Stitah S, Riedl T, et al. TFIIH interacts with the retinoic acid receptor gamma and phosphorylates its AF-1-activating domain through cdk7. J Biol Chem. 2000;275:21896–904.

    Article  CAS  PubMed  Google Scholar 

  278. Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly J-M. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARa. Cell. 2002;109:125–35.

    Article  CAS  PubMed  Google Scholar 

  279. Compe E, Drane P, Laurent C, et al. Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol Cell Biol. 2005;25:6065–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Drane P, Compe E, Catez P, Chymkowitch P, Egly J-M. Selective regulation of vitamin D receptor-responsive genes by TFIIH. Mol Cell. 2004;16:187–97.

    Article  CAS  PubMed  Google Scholar 

  281. Compe E, Malerbe M, Soler L, et al. Neurological defects in trichothiodystrophy reveal a coactivator function of TFIIH. Nat Neurosci. 2007;10:1414–22.

    Article  CAS  PubMed  Google Scholar 

  282. Hayes S, Shiyanov P, Chen X, Raychaudhuri P. DDB, a putative DNA repair protein, can function as a transcriptional partner of E2F1. Mol Cell Biol. 1998;18:240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Angers S, Li T, Yi X, et al. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 2006;443:590–3.

    CAS  PubMed  Google Scholar 

  284. Kulaksiz G, Reardon JT, Sancar A. Xeroderma pigmentosum complementation group E protein (XPE/DDB2): purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties. Mol Cell Biol. 2005;25:9784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Sugasawa K, Okuda Y, Saijo M, et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell. 2005;121:387–400.

    Article  CAS  PubMed  Google Scholar 

  286. Itoh T, Iwashita S, Cohen MB, Meyerholz DK, Linn S. Ddb2 is haploinnsuffient tumor suppressor and controls spontaneous germ cell apoptosis. Hum Mol Genet. 2007;16:1578–86.

    Article  CAS  PubMed  Google Scholar 

  287. Hoh J, Jin S, Parrado T, et al. The p53MH algorithm and its application in detecting p53-responsive genes. Proc Natl Acad Sci U S A. 2002;99:8467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Trosko JE, Kasschau MR. Study of pyrimidine dimers in mammalian cells surviving low doses of ultraviolet radiation. Photochem Photobiol. 1967;6:215–9.

    Article  CAS  Google Scholar 

  289. Painter RB, Cleaver JE. Repair replication, unscheduled DNA synthesis, and the repair of mammalian DNA. Radiat Res. 1969;37:451–66.

    Article  CAS  PubMed  Google Scholar 

  290. Klimek M. Thymine dimerization in L-strain mammalian cells after irradiation with ultraviolet light and the search for repair mechanisms. Photochem Photobiol. 1966;5:603–7.

    Article  CAS  PubMed  Google Scholar 

  291. Li J, Wang Q-E, Zhu Q, et al. DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity. Cancer Res. 2006;66:8590–7.

    Article  CAS  PubMed  Google Scholar 

  292. Lee TH, Elledge SJ, Butel JS. Hepatitis B virus X protein interacts with a probable cellular DNA repair protein. J Virol. 1995;69:1107–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Lin GY, Paterson RG, Richardson CD, Lamb RA. The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein. Virology. 1998;249:189–2000.

    Article  CAS  PubMed  Google Scholar 

  294. Watanabe T, Sukegawa J, Sukegawa I, et al. A 127-kDa protein (UV-DDB) binds to the cytoplasmic domain of the Alzheimer’s amyloid precursor protein. J Neurochem. 1999;72:549–56.

    Article  CAS  PubMed  Google Scholar 

  295. Cang Y, Zhang J, Nicholas SA, et al. DDB1 is essential for genomic stability in developing epidermis. Proc Natl Acad Sci U S A. 2007;104:2733–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Cang Y, Zhang J, Nicholas SA, et al. Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell. 2006;127:929–40.

    Article  CAS  PubMed  Google Scholar 

  297. Cleaver JE. Nucleotide excision repair and human disease. Encyclopedia Biol Chem. 2004;3:123–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Luke O’Brien Foundation and the XP Society whose continued support and encouragement have been instrumental in furthering our work on XP and Cockayne Syndrome. The work described here was supported in part by grants from the National Institutes of Neurological Disorders and Stroke grant 1R01NS052781 (JEC), P01 AR050440-01 (PI: E. Epstein). This chapter draws upon and updates several previous reviews [84, 235, 297].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Cleaver Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cleaver, J.E. (2017). Xeroderma Pigmentosum and the DNA Damage Response to Ultraviolet Light. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics