Skip to main content

Advertisement

Log in

Plant growth promoting microorganisms mediated abiotic stress tolerance in crop plants: a critical appraisal

  • Review
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Under the constant strain of rising environmental changes it is now more important than ever to describe and understand plant microbe interactions in terms of abiotic stress resistance. Multi omics including transcriptomics, genomics, RNomics etc. like approaches bring together studies on plants interactions with microbes and plant growth regulators to provide multi layered data. Comprehensive understanding of plant microbe mediated mechanisms and hormone signaling networks for abiotic stress tolerance is necessary to translate their practical use for plant survival under extreme conditions. This will pave the way for climate smart agriculture research that will help in progress and manipulation of advantageous microbes and plant regulators as foundation of crop acclimation to changing climatic conditions thereby strengthening further sustainable agriculture. For crop development, it is crucial to understand the fine tuning and integration of many signals created by microbial interactions in plants. This study discusses plant responses to microbe mediated stress relief that have been documented so far. Analyzing the plant characteristics that were heterogeneously related to soil metabolites, minerals, and microorganisms utilizing omics techniques. This will aid in the further adoption of omics-based methodologies while taking into account the various tactics used by microorganisms. Present review provides indepth understanding of the interplay between Plant growth promoting microorganisms with crop plants to circumvent the undesirable impacts of environmental stress on crop cultivar and will help to implement omics based strategies to overcome abiotic stresses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd El-Daim IA, Bejai S, Meijer J (2019) Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Sci Rep 9:1–18

    Article  CAS  Google Scholar 

  • Adhya TK, Kumar N, Reddy G et al (2015) Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr Sci 108:1280–1287

    CAS  Google Scholar 

  • Agrawal S, Kumar V, Singh S, Shahi SK (2022) Gene mediated phytodetoxification of environmental pollutants. In: Kumar V, Shah MP (eds) Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water. Elsevier, Amsterdam, pp 405–433

    Chapter  Google Scholar 

  • Aguayo P, Lagos C, Conejera D et al (2019) Transcriptome-wide identification of WRKY family genes and their expression under cold acclimation in Eucalyptus globulus. Trees 33:1313–1327

    Article  CAS  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. J Inst Integr Omi Appl Biotechnol 3:39

    CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ 26:1–20

    Article  Google Scholar 

  • Akhter Z, Bi Z, Ali K et al (2021) In response to abiotic stress, DNA methylation confers epigenetic changes in plants. Plants 10:1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  Google Scholar 

  • Ali B, Wang X, Saleem MH et al (2022) PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 11:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma S (2020) Microbe-based inoculants: role in next green revolution. In: Shukla V, Kumar N (eds) Environmental concerns and sustainable development. Springer, Berlin, pp 191–246

    Chapter  Google Scholar 

  • Asaf S, Khan MA, Khan AL et al (2017) Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J Plant Interact 12:31–38

    Article  CAS  Google Scholar 

  • Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl or Innov Eng Manage 5:56–66

    Google Scholar 

  • Athar R, Ahmad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Pollut 138:165–180

    Article  CAS  Google Scholar 

  • Audrain B, Farag MA, Ryu C-M, Ghigo J-M (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233

    Article  CAS  PubMed  Google Scholar 

  • Aydinoglu F (2020) Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress. Planta 251:1–15

    Article  Google Scholar 

  • Ayub MA, ur Rehman MZ, Umar W et al (2022) Role of glycine betaine in stress management in plants. In: Hossain A, Pamanick B (eds) Emerging plant growth regulators in Agriculture. Elsevier, Amsterdam, pp 335–356

    Chapter  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339. https://doi.org/10.1146/annurev.arplant.59.032607.092752

    Article  CAS  PubMed  Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banchio E, Bogino PC, Santoro M et al (2010) Systemic induction of monoterpene biosynthesis in Origanum × majoricum by soil bacteria. J Agric Food Chem 58:650–654

    Article  CAS  PubMed  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). Following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Imperlini E, Defez R (2009) Legumes like more IAA. Plant Signal Behav 4:763–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilal S, Shahzad R, Khan AL et al (2018) Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front Plant Sci 9:1273

    Article  PubMed  PubMed Central  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  PubMed  Google Scholar 

  • Breitkreuz C, Reitz T, Schulz E, Tarkka MT (2021) Drought and plant community composition affect the metabolic and genotypic diversity of pseudomonas strains in grassland soils. Microorganisms 9:1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooker R, Brown LK, George TS et al (2022) Active and adaptive plasticity in a changing climate. Trends Plant Sci 27:717

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Li J, Zhou M et al (2022) Compost-derived indole-3-acetic-acid-producing bacteria and their effects on enhancing the secondary fermentation of a swine manure-corn stalk composting. Chemosphere 291:132750

    Article  CAS  PubMed  Google Scholar 

  • Caravaca F, Figueroa D, Barea JM et al (2004) Effect of mycorrhizal inoculation on nutrient acquisition, gas exchange, and nitrate reductase activity of two Mediterranean-autochthonous shrub species under drought stress. J Plant Nutr 27:57–74

    Article  CAS  Google Scholar 

  • Chand Jha U, Nayyar H, Mantri N, Siddique KHM (2021) Non-coding RNAs in legumes: their emerging roles in regulating biotic/abiotic stress responses and plant growth and development. Cells 10:1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandwani S, Amaresan N (2022) Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production. Environ Sci Pollut Res 29:22843

    Article  CAS  Google Scholar 

  • Chang P, Gerhardt KE, Huang X-D et al (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediat 16:1133–1147

    Article  CAS  Google Scholar 

  • Chen H, Bullock DA, Alonso JM, Stepanova AN (2022) To fight or to grow: the balancing role of ethylene in plant abiotic stress responses. Plants 11:33

    Article  CAS  Google Scholar 

  • Cheng X, He Q, Tang S et al (2021) The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops. New Phytol 230:1017–1033

    Article  CAS  PubMed  Google Scholar 

  • Choo J, Sabri NBM, Tan D et al (2015) Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Sci J 50:445–453

    Article  CAS  Google Scholar 

  • Choudhary S, Wani KI, Naeem M et al (2022) Cellular responses, osmotic adjustments, and role of Osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10584-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363:557–572

    Article  CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • da Silva AV, da Silva MK, Sampaio EBT et al (2022) Benefits of plant growth-promoting symbiotic microbes in climate change era. In: Kumar A, Singh J (eds) Microbiome under changing climate. Elsevier, Amsterdam, pp 85–113

    Chapter  Google Scholar 

  • Dardanelli MS, de Cordoba FJF, Espuny MR et al (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • De Domenico S, Bonsegna S, Horres R et al (2012) Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiol Biochem 61:115–122

    Article  PubMed  Google Scholar 

  • Defez R, Esposito R, Angelini C, Bianco C (2016) Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids. Mol Plant-Microbe Interact 29:484–495

  • De Lorenzo L, Merchan F, Laporte P et al (2009) A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21:668–680

    Article  PubMed  PubMed Central  Google Scholar 

  • De Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  PubMed  Google Scholar 

  • Delaporte-Quintana P, Lovaisa NC, Rapisarda VA, Pedraza RO (2020) The plant growth promoting bacteria gluconacetobacter diazotrophicus and Azospirillum brasilense contribute to the iron nutrition of strawberry plants through siderophores production. Plant Growth Regul 91:185

    Article  CAS  Google Scholar 

  • Deshmukh R, Sonah H, Patil G et al (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Diels L, Van der Lelie N, Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82

    Article  CAS  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P et al (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A et al (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Dissanayake BM, Staudinger C, Munns R et al (2022) Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types. J Proteomics 256:104502

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Chen C (2022) Comprehensive Profiling of Paper Mulberry (Broussonetia papyrifera) crotonylome reveals the significance of lysine crotonylation in Young Leaves. Int J Mol Sci 23:1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dukare A, Mhatre P, Maheshwari HS et al (2022) Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech 12:1–33

    Article  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA et al (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24:170–179

    Article  CAS  PubMed  Google Scholar 

  • Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris l. cv.‘elkoca-05’). J Plant Nutr 33:2104–2119

    Article  CAS  Google Scholar 

  • Elnahal ASM, El-Saadony MT, Saad AM et al (2022) The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol 162:759

    Article  Google Scholar 

  • Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 9:377–396

    Article  CAS  PubMed  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN et al (2010) Radically rethinking agriculture for the 21st century. Science (80-) 327:833–834

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Seldin LFF, de Araujo Mariano RLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari D (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 21–43

    Chapter  Google Scholar 

  • Fincheira P, Quiroz A, Tortella G et al (2021) Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiol Res 247:126726

    Article  CAS  PubMed  Google Scholar 

  • Friesen ML, Porter SS, Stark SC et al (2013) Microbially mediated plant functional traits. Mol Microb Ecol Rhizosphere 1:87–102

    Article  CAS  Google Scholar 

  • Gahlaut V, Jaiswal V, Kumar S (2022) Whole-genome bisulfite sequencing for detection of DNA methylation in crops. In: Wani SH, Kumar A (eds) Genomics of cereal crops. Springer, Berlin, pp 325–334

    Chapter  Google Scholar 

  • Ghosh D, Gupta A, Mohapatra S (2019) Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis 77:265–278

    Article  CAS  Google Scholar 

  • Ghosh UK, Islam MN, Siddiqui MN et al (2022) Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol 24:227–239

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM (eds) New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 329–339

    Chapter  Google Scholar 

  • Gravel V, Antoun H, Tweddel RH (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V et al (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Guo Z, Liu C, Xiao W et al (2019) Comparative transcriptome profile analysis of anther development in reproductive stage of rice in cold region under cold stress. Plant Mol Biol Rep 37:129–145

    Article  CAS  Google Scholar 

  • Gupta A, Gopal M (2008) Siderophore production by plant growth promoting rhizobacteria. Indian J Agric Res 42:153–156

    Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK et al (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    CAS  Google Scholar 

  • Gupta S, Schillaci M, Roessner U (2022) Metabolomics as an emerging tool to study plant–microbe interactions. Emerg Top Life Sci 6:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassen AI, Bopape FL, Sanger LK (2016) Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 23–36

    Chapter  Google Scholar 

  • Hayat R, Ali S, Amara U et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A et al (2001) Antioxidant systems and O2.–/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain A, Pamanick B, Venugopalan VK et al (2022) Emerging roles of plant growth regulators for plants adaptation to abiotic stress–induced oxidative stress. In: Hossain A, Pamanick B (eds) Emerging plant growth regulators in agriculture. Elsevier, Amsterdam, pp 1–72

    Google Scholar 

  • Hu YF, Zhou G, Na XF et al (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HM, El-Sawah AM (2022) The Mode of Integration between Azotobacter and Rhizobium affect plant growth, yield, and physiological responses of pea (Pisum sativum L.). J Soil Sci Plant Nutr 22:1238

    Article  CAS  Google Scholar 

  • Ichihashi Y, Date Y, Shino A et al (2020) Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield. Proc Natl Acad Sci USA 117:14552–14560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal S, Wang X, Mubeen I et al (2022) Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Front Plant Sci. https://doi.org/10.3389/fpls.2021.799318

    Article  PubMed  PubMed Central  Google Scholar 

  • Irion U, Nüsslein-Volhard C (2022) Developmental genetics with model organisms. Proc Natl Acad Sci USA 119:e2122148119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izaguirre-Mayoral ML, Lazarovits G, Baral B (2018) Ureide metabolism in plant-associated bacteria: purine plant-bacteria interactive scenarios under nitrogen deficiency. Plant Soil 428:1–34

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Jha UC, Nayyar H, Jha R et al (2020) Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation. BMC Plant Biol 20:1–20

    Article  Google Scholar 

  • Jiang J, Pan C, Xiao A et al (2017) Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery. 3 Biotech 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Mejía R, Medina-Estrada RI, Carballar-Hernández S et al (2022) Teamwork to survive in hostile soils: use of plant growth-promoting bacteria to ameliorate soil salinity stress in crops. Microorganisms 10:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurburg SD, Eisenhauer N, Buscot F et al (2022) Potential of microbiome-based solutions for agrifood systems. Nat Food 3:557–560

    Article  Google Scholar 

  • Kai M, Effmert U, Piechulla B (2016) Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Front Microbiol 7:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalam S, Anirban B, Podile AR (2022) Difficult-to-culture bacteria in the rhizosphere: the underexplored signature microbial groups. Pedosphere 32:75–89

    Article  CAS  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kasotia A, Varma A, Choudhary DK (2015) Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res 4:31–41

    Article  CAS  Google Scholar 

  • Kaur H, Hussain SJ, Kaur G et al (2022) Salicylic acid improves Nitrogen fixation, growth, yield and antioxidant defence mechanisms in chickpea genotypes under salt stress. J Plant Growth Regul 41:2034

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O et al (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic (Amsterdam) 121:1–6

    Article  CAS  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Lee I-J (2013) Endophytic penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13:1–14

    Article  Google Scholar 

  • Khan AL, Hamayun M, Kim Y-H et al (2011) Gibberellins producing endophytic aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Reddy PS, Ferrante A, Khan NA (2019) Plant signaling molecules: role and regulation under stressful environments. Woodhead Publishing, Sawston

    Google Scholar 

  • Khedr RA, Sorour SGR, Aboukhadrah SH et al (2022) Alleviation of salinity stress effects on agro-physiological traits of wheat by auxin, glycine betaine, and soil additives. Saudi J Biol Sci 29:534–540

    Article  CAS  PubMed  Google Scholar 

  • Khoshru B, Mitra D, Khoshmanzar E et al (2020) Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. J Plant Nutr 43:3062–3092

    Article  CAS  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. TRENDS Biotechnol 19:15–20

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  PubMed  Google Scholar 

  • Kohli D, Joshi G, Deokar AA et al (2014) Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS ONE 9:e108851

    Article  PubMed  PubMed Central  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:1–15

  • Kudoyarova GR, Melentiev AI, Martynenko EV et al (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Sharma K, Saini L, Dey SR (2021) Role and behavior of microbial volatile organic compounds in mitigating stress. In: Kumar A, Singh J (eds) Volatiles and metabolites of microbes. Elsevier, Amsterdam, pp 143–161

    Chapter  Google Scholar 

  • Kumar A, Kumar N, Yadav N et al (2022) Microbe-mediated amelioration of salinity stress in crops. In: Vaishnav A, Arya S (eds) Plant stress mitigators. Springer, Berlin, pp 429–450

    Google Scholar 

  • Kumawat KC, Nagpal S, Sharma P (2022) Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: a review. Pedosphere 32:223–245

    Article  Google Scholar 

  • Kusunoki K, Kobayashi Y, Kobayashi Y, Koyama H (2018) Comparative characterization of aluminum responsive transcriptome in Arabidopsis roots: comparison with other rhizotoxic ions at different stress intensities. Soil Sci Plant Nutr 64:469–481

    Article  CAS  Google Scholar 

  • Lastochkina O, Garshina D, Ivanov S et al (2020) Seed priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants 9:1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276

    Article  CAS  PubMed  Google Scholar 

  • Latef AAHA, Hashem A, Rasool S et al (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Biol 59:407–426

    Article  Google Scholar 

  • Lazazzara V, Avesani S, Robatscher P et al (2022) Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. J Exp Bot 73:529–554

    Article  CAS  PubMed  Google Scholar 

  • Legnaioli T (2013) Novel mechanisms and transcription factors involved in the control of stomatal behaviour in Arabidopsis thaliana/Nuevos mecanismos y factores de transcripción involucrados en el control del comportamiento estomático en Arabidopsis thaliana. Universitat de Barcelona, Barcelona

    Google Scholar 

  • Li C, Wang Z, Nong Q et al (2021) Physiological changes and transcriptome profiling in Saccharum spontaneum L. leaf under water stress and re-watering conditions. Sci Rep 11:1–14

    Google Scholar 

  • Li B, Zhang C, Qi M et al (2022) Effects of plant growth-promoting rhizobacteria on uptake and utilization of phosphorus and root architecture in apple seedlings under water limited regimes. Int J Appl Exp Biol 1:1–8

    Article  Google Scholar 

  • Li J, He H, Li Y et al (2022) Role of long non-coding RNA in plant responses to abiotic stresses. Acta Physiol Plant 44:1–13

    Article  Google Scholar 

  • Liang X, Hou X, Li J et al (2019) High-resolution DNA methylome reveals that demethylation enhances adaptability to continuous cropping comprehensive stress in soybean. BMC Plant Biol 19:1–17

    Article  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Liu Y, Shi Z, Yao L et al (2013) Effect of IAA produced by Klebsiella oxytoca Rs-5 on cotton growth under salt stress. J Gen Appl Microbiol 59:59–65

    Article  PubMed  Google Scholar 

  • Liu Z, Hartman S, van Veen H et al (2022) Ethylene augments root hypoxia tolerance through amelioration of reactive oxygen species and growth cessation. bioRxiv. https://doi.org/10.1101/2022.01.21.477196

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes MJ, dos Dias-Filho S, Gurgel MB (2021) Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Front Sustain Food Syst 5:606454

    Article  Google Scholar 

  • Loukehaich R, Wang T, Ouyang B et al (2012) SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot 63:5593–5606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucena C, Wang J (2022) Beneficial microbes and the interconnection between crop mineral nutrition and induced systemic resistance. Front Plant Sci. https://doi.org/10.3389/fpls.2021.790616

    Article  PubMed  PubMed Central  Google Scholar 

  • Lugan R, Niogret M, Leport L et al (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Liu J, Lee RD et al (2010) Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. J Integr Plant Biol 52:1059–1074

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 174:14–25

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Zhang J, Yuan J et al (2019) Differential expression of microRNAs are responsive to drought stress and exogenous methyl jasmonate in wheat (Triticum aestivum). Int J Agric Biol 22:475–486

    CAS  Google Scholar 

  • Maheshwari HS, Bharti A, Agnihotri R et al (2021) Combating the abiotic stress through Phytomicrobiome Studies. Phytomicrobiome Interact Sustain Agric. https://doi.org/10.1002/9781119644798.ch4

    Article  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F et al (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • Mashabela MD, Piater LA, Dubery IA et al (2022) Rhizosphere tripartite interactions and PGPR-Mediated metabolic reprogramming towards ISR and plant priming: a metabolomics review. Biology (Basel) 11:346

    CAS  PubMed  Google Scholar 

  • Mathur P, Tripathi DK, Baluska F, Mukherjee S (2022) Molecular mechanisms of auxin mediated regulation of heavy metal and metalloid stress in plants. Environ Exp Bot 196:104796

    Article  CAS  Google Scholar 

  • Mazahar S, Umar S (2022) Soil potassium availability and role of microorganisms in influencing potassium availability to plants. In: Iqbal N, Umar S (eds) Role of potassium in abiotic stress. Springer, Singapore, pp 77–87

    Chapter  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science (80-) 332:1097–1100

    Article  CAS  Google Scholar 

  • Micheel J, Safrastyan A, Wollny D (2021) Advances in non-coding RNA sequencing. Non-coding RNA 7:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Million M, Feyissa T (2022) RNA-seq as an effective tool for modern transcriptomics, a review-based study. J Appl Res Plant Sci 3:236–241

    Article  Google Scholar 

  • Mir RA, Nazir M, Naik S et al (2022) Utilizing the underutilized plant resources for development of life style foods: putting nutrigenomics to use. Plant Physiol Biochem 171:128–138

    Article  CAS  PubMed  Google Scholar 

  • Mishra DC, Guha Majumdar S, Budhlakoti N et al (2022) OMICS tools and techniques for study of defense mechanism in plants. In: Kumar RR, Praveen S (eds) Thermotolerance in crop plants. Springer, Singapore, pp 237–250

    Chapter  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mokrani S, Nabti E, Cruz C (2020) Current advances in plant growth promoting bacteria alleviating salt stress for sustainable agriculture. Appl Sci 10:7025

    Article  CAS  Google Scholar 

  • Molina C, Rotter B, Horres R et al (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:1–28

    Article  Google Scholar 

  • Mousavi SB, Sayfzadeh S, Jabbari H et al (2022) Effect of auxin foliar application on seed yield and fatty acids composition of two safflower genotypes under late-season drought. Plant Soil Environ 68:82–88

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Komatsu S (2014) Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. Front Plant Sci 5:627

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Fujita M (2016) Roles of osmolytes in plant adaptation to drought and salinity. In: Iqbal N, Nazar R (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, Berlin, pp 37–68

    Chapter  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701

    Article  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol. https://doi.org/10.5897/AJB09.1176

    Article  Google Scholar 

  • Neshat M, Abbasi A, Hosseinzadeh A et al (2022) Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiol Mol Biol Plants 28:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nia SH, Zarea MJ, Rejali F, Varma A (2012) Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci 11:113–121

    Google Scholar 

  • Nikolic B, Schwab, H, Sessitsch A (2011) Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 193:665–676

  • Noctor G, Reichheld J-P, Foyer CH (2018) ROS-related redox regulation and signaling in plants. In: Vriz S (ed) Seminars in cell & developmental biology. Elsevier, Amsterdam, pp 3–12

    Google Scholar 

  • Notununu I, Moleleki L, Roopnarain A, Adeleke R (2022) Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: a review. Pedosphere 32:90–106

    Article  CAS  Google Scholar 

  • Nutan KK, Rathore RS, Tripathi AK et al (2020) Integrating the dynamics of yield traits in rice in response to environmental changes. J Exp Bot 71:490–506

    Article  CAS  PubMed  Google Scholar 

  • Ogbe AA, Finnie JF, Van Staden J (2020) The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. S Afr J Bot 134:126–134

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagano L, Rossi R, Paesano L et al (2021) miRNA regulation and stress adaptation in plants. Environ Exp Bot 184:104369

    Article  CAS  Google Scholar 

  • Pandey A, Chakraborty S, Datta A, Chakraborty N (2008) Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics 7:88–107

    Article  CAS  PubMed  Google Scholar 

  • Parray JA, Bandh SA, Shameem N (2022) Climate change and microbes: impacts and vulnerability. CRC Press, Boca Raton

    Book  Google Scholar 

  • Patel J, Khandwal D, Choudhary B et al (2022) Differential Physio-Biochemical and metabolic responses of peanut (Arachis hypogaea L.) under multiple abiotic stress conditions. Int J Mol Sci 23:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea-García A, Andrés-Bordería A, Huijser P, Peñarrubia L (2021) The copper-microrna pathway is integrated with developmental and environmental stress responses in Arabidopsis thaliana. Int J Mol Sci 22:9547

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira SIA, Monteiro C, Vega AL, Castro PML (2016) Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–97

    Article  Google Scholar 

  • Piccoli P, Travaglia C, Cohen A et al (2011) An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins a 1 and a 3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regul 64:207–210

    Article  CAS  Google Scholar 

  • Porfirio LL, Newth D, Finnigan JJ, Cai Y (2018) Economic shifts in agricultural production and trade due to climate change. Palgrave Commun 4:1–9

    Article  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praveen Kumar G, SK MHA, Desai S, Rasul A, (2014) In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. Int J Bacteriol 2014:6

    Article  Google Scholar 

  • Prince SJ, Joshi T, Mutava RN et al (2015) Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting. Plant Sci 240:65–78

    Article  CAS  PubMed  Google Scholar 

  • Purdy SJ, Maddison AL, Jones LE, Webster RJ, Andralojc J, Donnison I, Clifton-Brown J (2013) Characterization of chilling-shock responses in four genotypes of Miscanthus reveals the superior tolerance of M. × giganteus compared with M. sinensis and M. sacchariflorus. Ann Bot 111:999–1013

  • Rabie GH (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15:225–230

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramazan S, Nazir I, Yousuf W, John R (2022) Environmental stress tolerance in maize (Zea mays): role of polyamine metabolism. Funct Plant Biol. https://doi.org/10.1071/FP21324

    Article  Google Scholar 

  • Rani V, Sengar RS (2022) Biogenesis and mechanisms of microRNA-mediated gene regulation. Biotechnol Bioeng 119:685–692

    Article  CAS  PubMed  Google Scholar 

  • Rawat J, Pandey N, Saxena J (2022) Role of potassium in plant photosynthesis, transport, growth and yield. In: Iqbal N, Umar S (eds) Role of potassium in abiotic stress. Springer, Springer, pp 1–14

    Google Scholar 

  • Riaz M, Arif MS, Ashraf MA et al (2019) A comprehensive review on rice responses and tolerance to salt stress. In: Hasanuzzaman M, Fujita M (eds) Advances in rice research for abiotic stress tolerance. Elsevier, Amsterdam, pp 133–158

    Chapter  Google Scholar 

  • Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE et al (2022) The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. Environ Geochem Health 44:3743

    Article  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA et al (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos A, de Silveira A, da Bonifacio JAG et al (2018) Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress. Braz J Microbiol 49:513–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satheesh V, Zhang H, Wang X, Lei M (2019) Precise editing of plant genomes–prospects and challenges. In: Jain A, Rai V (eds) Seminars in cell & developmental biology. Elsevier, Amsterdam, pp 115–123

    Google Scholar 

  • Sati D, Pande V, Pandey SC, Samant M (2022) Recent advances in PGPR and molecular mechanisms involved in drought stress resistance. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-021-00724-5

    Article  Google Scholar 

  • Sayyed RZ, Ilyas N, Tabassum B et al (2019) Plausible role of plant growth-promoting rhizobacteria in future climatic scenario. In: Sobti R, Arora N (eds) Environmental biotechnology: for sustainable future. Springer, Singapore, pp 175–197

    Chapter  Google Scholar 

  • Scarpeci TE, Zanor MI, Valle EM (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 3:856–857

    Article  PubMed  PubMed Central  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Haferburg G, Sineriz M et al (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Geochemistry 65:131–144

    Article  CAS  Google Scholar 

  • Schweiger R, Baier MC, Persicke M, Müller C (2014) High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Nat Commun 5:1–11

    Article  Google Scholar 

  • Šečić E, Kogel K-H, Ladera-Carmona MJ (2021) Biotic stress-associated microRNA families in plants. J Plant Physiol 263:153451

    Article  PubMed  Google Scholar 

  • Seleiman MF, Al-Suhaibani N, Ali N et al (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah D, Khan MS, Aziz S et al (2022) Molecular and biochemical characterization, antimicrobial activity, stress tolerance, and plant growth-promoting effect of endophytic bacteria isolated from wheat varieties. Microorganisms 10:21

    Article  CAS  Google Scholar 

  • Shahzad R, Waqas M, Khan AL et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243

    Article  CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:1–14

    Article  Google Scholar 

  • Shelp BJ, Bown AW, Zarei A (2017) 4-Aminobutyrate (GABA): a metabolite and signal with practical significance. Botany 95:1015–1032

    Article  CAS  Google Scholar 

  • Sherin G, Aswathi KPR, Puthur JT (2022) Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress 4:100079

    Article  CAS  Google Scholar 

  • Shi H, Shi Q, Grodner B, Lenz JS, Zipfel WR, Brito IL, De Vlaminck I (2020) Highly multiplexed spatial mapping of microbial communities. Nature 588:676–681

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM, Keppler BD, Liu X et al (2016) Bioinformatic identification and analysis of hydroxyproline-rich glycoproteins in Populus trichocarpa. BMC Plant Biol 16:1–34

    Article  Google Scholar 

  • Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Singh CK, Taunk J et al (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18:1–20

    Article  Google Scholar 

  • Singh P, Arif Y, Miszczuk E et al (2022a) Specific roles of lipoxygenases in development and responses to stress in plants. Plants 11:979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Singh RK, Zhou Y et al (2022b) Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review. J Plant Interact 17:220–238

    Article  Google Scholar 

  • Singh P, Tiwari A, Kumar V, Singh AK (2022c) Genetics and epigenetics-role in development of climate resilient crops. Pharma Innov J 11:1957–1960

  • Singroha G, Sharma P, Sunkur R (2021) Current status of microRNA-mediated regulation of drought stress responses in cereals. Physiol Plant 172:1808–1821

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Mishra M (2022) Polyamines: metabolism, regulation, and functions in crop abiotic stress tolerance. In: Ansari SA, Ansari MI (eds) Augmenting crop productivity in stress environment. Springer, Singapore, pp 317–344

    Chapter  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A et al (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song GC, Jeon J-S, Sim H-J et al (2022) Dual functionality of natural mixtures of bacterial volatile compounds on plant growth. J Exp Bot 73:571–583

    Article  CAS  PubMed  Google Scholar 

  • Sorty AM, Bitla UM, Meena KK, Singh NP (2018) Role of microorganisms in alleviating abiotic stresses. In: Panpatte DG, Jhala YK (eds) Microorganisms for green revolution. Springer, Berlin, pp 115–128

    Chapter  Google Scholar 

  • Srinivasa C, Mellappa G, Patil SM et al (2022) Plants and endophytes–a partnership for the coumarin production through the microbial systems. Mycology 13:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596

    Article  PubMed  PubMed Central  Google Scholar 

  • Stief A, Altmann S, Hoffmann K et al (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subba P, Barua P, Kumar R et al (2013) Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. J Proteome Res 12:5025–5047

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Yang Z, Liu L, Duan L (2022) DNA methylation in plant responses and adaption to Abiotic stresses. Int J Mol Sci 23:6910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    Article  CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204

    Article  CAS  PubMed  Google Scholar 

  • Tariq A, Ahmed A (2022) Auxins-interkingdom signaling molecules. In: Hano C (ed) Plant hormones: recent advances, new perspectives and applications, vol 3. IntechOpen, London

    Google Scholar 

  • Tay Fernandez CG, Nestor BJ, Danilevicz MF et al (2022) Expanding gene-editing potential in crop improvement with pangenomes. Int J Mol Sci 23:2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9:e96086

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK et al (2020) Phytohormones producing fungal communities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S (eds) Agriculturally important fungi for sustainable agriculture. Springer, Berlin, pp 171–197

    Chapter  Google Scholar 

  • Tondo ML, Delprato ML, Kraiselburd I et al (2016) KatG, the bifunctional catalase of Xanthomonas citri subsp. citri, responds to hydrogen peroxide and contributes to epiphytic survival on citrus leaves. PLoS ONE 11:e0151657

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi P, Batista BD, Bazany KE, Singh BK (2022) Plant–microbiome interactions under a changing world: responses, consequences and perspectives. New Phytol. https://doi.org/10.1111/nph.18016

    Article  PubMed  Google Scholar 

  • Vaikuntapu PR, Dutta S, Samudrala RB et al (2014) Preferential promotion of Lycopersicon esculentum (Tomato) growth by plant growth promoting bacteria associated with tomato. Indian J Microbiol 54:403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hulten M, Pelser M, Van Loon LC et al (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S et al (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:1–12

    Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M et al (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

  • Waadt R, Seller CA, Hsu P-K et al (2022) Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol 23:680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker V, Bertrand C, Bellvert F et al (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth‐promoting rhizobacteria of the genus Azospirillum. New Phytol 189:494–506

    Article  CAS  PubMed  Google Scholar 

  • Wang C-J, Yang W, Wang C et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7:e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li T, Liu G et al (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:1–12

    Google Scholar 

  • Wang P, Zhao Y, Li Z et al (2018) Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69:100–112

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li N, Li W et al (2020) Advances in Transcriptomics in the response to stress in plants. Glob Med Genet 7:30–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Pang J, Zhang F et al (2022) Salt–responsive transcriptome analysis of canola roots reveals candidate genes involved in the key metabolic pathway in response to salt stress. Sci Rep 12:1–16

    Google Scholar 

  • Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965

    Article  CAS  PubMed  Google Scholar 

  • Waqas M, Khan AL, Kamran M et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav B, Jogawat A, Rahman MS, Narayan OP (2021) Secondary metabolites in the drought stress tolerance of crop plants: a review. Gene Rep 23:101040

    Article  CAS  Google Scholar 

  • Young ND, Bharti AK (2012) Genome-enabled insights into legume biology. Annu Rev Plant Biol 63:283–305

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Cannon SB, Sato S et al (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yung W, Huang C, Li M, Lam H (2022) Changes in epigenetic features in legumes under abiotic stresses. Plant Genome. https://doi.org/10.1002/tpg2.20237

    Article  PubMed  Google Scholar 

  • Zenda T, Liu S, Dong A, Duan H (2021) Advances in cereal crop genomics for resilience under climate change. Life 11:502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Murzello C, Sun Y et al (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Zhong X (2016) Comparative epigenomics: a powerful tool to understand the evolution of DNA methylation. New Phytol 210:76–80

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Ma Z, Zhu L et al (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci 17:976

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Xu P, Gong J et al (2022) Metagenomic profiles of the resistome in subtropical estuaries: co-occurrence patterns, indicative genes, and driving factors. Sci Total Environ 810:152263

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Zhou Y-Y, Zhai H et al (2021) Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J Integr Agric 18:9

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

NG and SA conceived, NG, SA, and RAM writing and designing. NG, IAW, SHA, SV, JAN and RAM figure making. JAN and RG table making.

Corresponding author

Correspondence to Saima Aslam.

Ethics declarations

Conflict of interest

There are no competing interests declared by the authors.

Additional information

Communicated by Hang-Wei Hu.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, N., Wani, I.A., Mir, R.A. et al. Plant growth promoting microorganisms mediated abiotic stress tolerance in crop plants: a critical appraisal. Plant Growth Regul 100, 7–24 (2023). https://doi.org/10.1007/s10725-022-00951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00951-5

Keywords

Navigation