Skip to main content

Advertisement

Log in

Zinc oxide nanoparticles alleviate cadmium stress by modulating plant metabolism and decreasing cadmium accumulation in Perilla frutescents

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cadmium (Cd), one of the most toxic heavy metals, severely represses plant growth and development. Previous studies have demonstrated that engineered nanomaterials can modulate heavy metal toxicity tolerance in plants. However, the mechanisms of zinc oxide nanoparticle (Zn NP)-mediated Cd tolerance in plants remain largely unclear. In this study, Zn NPs were sprayed on the leaves of perilla (Perilla frutescents) seedlings under Cd stress, and related morphological and physiological indicators were recorded and analyzed. The results showed that Zn NPs could increase the root and leaf dry weight of perilla seedlings by 58% and 12%, respectively, under Cd stress and could increase the photosynthetic capacity index qP under high Cd stress by 23%. Physiological analysis showed that Zn NPs could increase the superoxide dismutase (SOD) and peroxidase (POD) activities under Cd stress by 114% and 10%, and reduce catalase (CAT) activity and malondialdehyde (MDA) content by 81% and 13%, respectively. Meanwhile, Zn NPs increased the content of nutrient elements and promoted the growth of perilla seedlings under Cd stress. Moreover, compared with Cd treatment alone, Zn NPs decreased Cd accumulation by 82% and 32% in the leaves and roots of Cd-treated perilla leaves, respectively. Further metabolomics analyses revealed that treatment with Zn NPs increased the contents of organic acids (citric acid, malic acid and maleic acid) and amino acids (arginine, glutamate and phenylalanine) in the Cd-treated plants. These stress-related metabolites alleviated Cd toxicity in plants. These results collectively indicated that Zn NPs might be used as a potential regulator to improve plant growth and decrease Cd accumulation in vegetables, and provided insights into a better understanding of the detoxification mechanism of Zn NPs for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afzal J, Saleem MH, Batool F, Elyamine AM, Rana MS, Shaheen A, El-Esawi MA, Tariq Javed M, Ali Q, Arslan Ashraf M, Hussain GS, Hu C (2020) Role of Ferrous Sulfate (FeSO4) in resistance to cadmium stress in two Rice (Oryza sativa L.) genotypes. Biomolecules 10(12):1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Aziz U, Sahli AA, Alyemeni MN, Ahmad P (2020) Combined kinetin and spermidine treatments ameliorate growth and photosynthetic inhibition in Vigna angularis by Up-Regulating antioxidant and Nitrogen Metabolism under Cadmium stress. Biomolecules 10(1):147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alamri SA (2017) Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch Agron Soil Sci 63(13):1889–1899

    Article  CAS  Google Scholar 

  • Ali S, Rizwan M, Hussain A, Zia Ur Rehman M, Ali B, Yousaf B, Wijaya L, Alyemeni MN, Ahmad P (2019a) Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiol Biochem 140:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, Abd Allah EF, Alqarawi AA, Ahmad P (2019b) Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ Sci Pollut Res Int 26(11):11288–11299

    Article  CAS  PubMed  Google Scholar 

  • Alyemeni MN, Ahanger MA, Wijaya L, Alam P, Bhardwaj R, Ahmad P (2018) Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma 255(2):459–469

    Article  CAS  PubMed  Google Scholar 

  • Asif M (2011) Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med 11(1):51–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslam MM, Okal EJ, Waseem M (2022) Cadmium toxicity impacts plant growth and plant remediation strategies. Plant Growth Regul. https://doi.org/10.1007/s10725-022-00917-7

    Article  Google Scholar 

  • Barclay KD, McKersie BD (1994) Peroxidation reactions in plant membranes: effects of free fatty acids. Lipids 29:877–883

    Article  CAS  PubMed  Google Scholar 

  • Basgel S, Erdemoglu SB (2006) Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ 359(1–3):82–89

    Article  CAS  PubMed  Google Scholar 

  • Bela K, Horvath E, Galle A, Szabados L, Tari I, Csiszar J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Chu Z, Munir S, Zhao G, Hou J, Du W, Li N, Lu Y, Yu Q, Shabala S, Ouyang B (2020) Linking phytohormones with growth, transport activity and metabolic responses to cadmium in tomato. Plant Growth Regul 90:557–569

    Article  CAS  Google Scholar 

  • Claussen W (2005) Proline as a measure of stress in tomato plants. Plant Sci 168(1):241–248

    Article  CAS  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2012) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35(4):1281–1289

    Article  Google Scholar 

  • Elbeltagi HS, Mohamed A, Rashed MM (2010) Response of antioxidative enzymes to cadmium stress in Leaves and roots of Radish (Raphanus sativus L.). Notulae Scientia Biologicae 2(4):76–82

    Article  CAS  Google Scholar 

  • Faizan M, Bhat JA, Chen C, Alyemeni MN, Wijaya L, Ahmad P, Yu F (2021) Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol Biochem 161:122–130

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Huang Z, Lin L, Hu R (2019) Effects of abscisic acid on soluble sugar content of Perilla frutescens seedlings under cadmium stress. IOP Conf Ser : Earth Environ Sci 330(4):042038

    Article  Google Scholar 

  • Fu H, Yu H, Li T, Zhang X (2018) Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol Environ Saf 150:168–175

    Article  CAS  PubMed  Google Scholar 

  • Garimella L, Dhiman TK, Kumar R, Singh AK, Solanki PR (2020) One-step synthesized ZnO np-based optical sensors for detection of Aldicarb via a Photoinduced Electron transfer Route. ACS Omega 5(6):2552–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M (2018) Glutathione: antioxidant Properties dedicated to nanotechnologies. Antioxidants 7(5):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14(7):1437–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain I, Saleem MH, Mumtaz S, Rasheed R, Ashraf MA, Maqsood F, Rehman M, Yasmin H, Ahmed S, Ishtiaq M, Anwar S, Ali S (2021) Choline Chloride mediates Chromium Tolerance in Spinach (Spinacia oleracea L.) by restricting its Uptake in Relation to Morpho-physio-biochemical attributes. J Plant Growth Regul 41(4):1594–1614

    Article  Google Scholar 

  • Hassan A, Amjad SF, Saleem MH, Yasmin H, Imran M, Riaz M, Ali Q, Joyia FA, Ahmed S, Ali S (2021) Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J Biol Sci 28(8):4276–4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanisaadi M, Barani M, Rahdar A, Heidary M, Thysiadou A, Kyzas GZ (2022) Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul 97:375–418

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil, California Agricultural Experiment Station 347(2nd edit)

  • Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol 18(1):146

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Arias D, García-Machado FJ, Morales-Sierra S, Luis JC, Suarez E, Hernández M, Valdés F, Borges AA (2019) Lettuce plants treated with L-pyroglutamic acid increase yield under water deficit stress. Environ Exp Bot 158:215–222

    Article  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39(4):933–947

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Yadav P, Thukral AK, Sharma A, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2017) Castasterone and Citric Acid Supplementation alleviates Cadmium Toxicity by modifying Antioxidants and Organic acids in Brassica juncea. J Plant Growth Regul 37(1):286–299

    Article  CAS  Google Scholar 

  • Kaya C, Akram NA, Ashraf M, Alyemeni MN, Ahmad P (2020a) Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide. J Biotechnol 316:35–45

    Article  CAS  PubMed  Google Scholar 

  • Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P (2019) Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere 230:628–639

    Article  CAS  PubMed  Google Scholar 

  • Kisan B, Shruthi H, Sharanagouda H, Revanappa S, Pramod NK (2015) Effect of Nano-Zinc Oxide on the Leaf Physical and Nutritional Quality of Spinach. Agrotechnology 5(1):135

    Google Scholar 

  • Li J, Xu Y (2017) Immobilization remediation of Cd-polluted soil with different water condition. J Environ Manage 193:607–612

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liang L, Li W, Ashraf U, Ma L, Tang X, Pan S, Tian H, Mo Z (2021) ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J Nano biotechnology 19(1):1–19

    Google Scholar 

  • Li Y, Zhu N, Liang X, Bai X, Zheng L, Zhao J, Li Y-f, Zhang Z, Gao Y (2020) Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of hg(ii) in soybean (Glycine max). Environ Sci-Nano 7(6):1807–1817

    Article  CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853

    Article  PubMed  Google Scholar 

  • Lin H, Fang C, Li Y, Lin W, He J, Lin R, Lin W (2017) Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regul 81:91–101

    Article  CAS  Google Scholar 

  • Lin L, Zhou W, Dai H, Cao F, Zhang G, Wu F (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235:343–351

    Article  PubMed  Google Scholar 

  • Lowry GV, Avellan A, Gilbertson LM (2019) Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat Nanotechnol 14(6):517–522

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Sharifan H, Dou F, Sun W (2020) Simultaneous reduction of arsenic (as) and cadmium (cd) accumulation in rice by zinc oxide nanoparticles. Chem Eng J 384:123802

    Article  CAS  Google Scholar 

  • Mirza H, Kamrun N, Gill SS, Alharby HF, Razafindrabe B, Masayuki F (2017) Hydrogen peroxide pretreatment mitigates Cadmium-Induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase Systems. Front Plant Sci 8:115

    Google Scholar 

  • Nair PMG, Chung IM (2017) Evaluation of stress effects of copper oxide nanoparticles in Brassica napus L. seedlings. 3 Biotech 7(5):1–8

    Article  Google Scholar 

  • Okazaki Y, Saito K (2014) Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J 79(4):584–596

    Article  CAS  PubMed  Google Scholar 

  • Pavlik M, Pavlikova D, Zemanova V, Hnilicka F, Urbanova V, Szakova J (2012) Trace elements present in airborne particulate matter–stressors of plant metabolism. Ecotoxicol Environ Saf 79:101–107

    Article  CAS  PubMed  Google Scholar 

  • Popko J, Hansch R, Mendel RR, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12(2):242–258

    Article  CAS  PubMed  Google Scholar 

  • Qu DY, Gu WR, Zhang LG, Li CF, Chen XC, Li J, Li LJ, Xie TL, Wei S (2019) Role of Chitosan in the regulation of the growth, antioxidant system and photosynthetic characteristics of Maize seedlings under cadmium stress. Russ J Plant Physiol 66(1):140–151

    Article  CAS  Google Scholar 

  • Raghib F, Naikoo MI, Khan FA, Alyemeni MN, Ahmad P (2020) Interaction of ZnO nanoparticle and AM fungi mitigates pb toxicity in wheat by upregulating antioxidants and restricted uptake of Pb. J Biotechnol 323:254–263

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2(1):105–114

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Rehman MZU, Adrees M, Arshad M, Qayyum MF, Ali L, Hussain A, Chatha SAS, Imran M (2019a) Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ Pollut 248:358–367

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia ur Rehman M, Waris AA (2019b) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29(8):1532–1544

    Article  CAS  PubMed  Google Scholar 

  • Saleem MH, Ali S, Rehman M, Rana MS, Rizwan M, Kamran M, Imran M, Riaz M, Soliman MH, Elkelish A, Liu L (2020) Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 248:126032

    Article  CAS  PubMed  Google Scholar 

  • Saleem MH, Parveen A, Khan SU, Hussain I, Wang X, Alshaya H, El-Sheikh MA, Ali S (2022) Silicon Fertigation Regimes attenuates cadmium toxicity and phytoremediation potential in two maize (Zea mays L.) Cultivars by minimizing its uptake and oxidative stress. Sustainability 14(3):1462

    Article  CAS  Google Scholar 

  • Shah T, Latif S, Saeed F, Ali I, Ullah S, Abdullah Alsahli A, Jan S, Ahmad P (2021) Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J King Saud Univ Sci 33(1):101207

    Article  Google Scholar 

  • Sheteiwy MS, Dong Q, An J, Song W, Guan Y, He F, Huang Y, Hu J (2017) Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regul 83:27–41

    Article  CAS  Google Scholar 

  • Shu J, He Q, Zheng H, Liao MA, Kuang N, Huang Z (2021) Abscisic acid improves the ability of accumulator plant Perilla frutescens to perform phytoremediation in cadmium-contaminated soils.Int. J. Environ. Anal. Chem.,1–10

  • Sun L, Wang Y, Wang R, Wang R, Zhang P, Ju Q, Xu J (2020) Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environ Sci-Nano 7(11):3587–3604

    Article  CAS  Google Scholar 

  • Tao Q, Hou D, Yang X, Li T (2015) Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of cd. Plant Soil 398(1–2):139–152

    Google Scholar 

  • Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci-Proc Imp 15(10):1830–1843

    CAS  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Bioch 110:118–127

    Article  CAS  Google Scholar 

  • Wan J, Wang R, Bai H, Wang Y, Xu J (2020) Comparative physiological and metabolomics analysis reveals that single-walled carbon nanohorns and ZnO nanoparticles affect salt tolerance in Sophora alopecuroides. Environ Sci-Nano 7(10):2968–2981

    Article  CAS  Google Scholar 

  • Wan J, Wang R, Wang R, Ju Q, Wang Y, Xu J (2019) Comparative physiological and transcriptomic analyses reveal the toxic Effects of ZnO Nanoparticles on Plant Growth. Environ Sci Technol 53(8):4235–4244

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang F, Gao S (2015) Foliar application with nano-silicon alleviates cd toxicity in rice seedlings. Environ Sci Pollut Res Int 22(4):2837–2845

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen R, Hao Y, Liu H, Song S, Sun G (2017) Transcriptome analysis reveals differentially expressed genes (DEGs) related to lettuce (Lactuca sativa) treated by TiO2/ZnO nanoparticles. Plant Growth Regul 83:13–25

    Article  CAS  Google Scholar 

  • Wang Y, Zhang P, Li M, Guo Z, Ullah S, Rui Y, Lynch I (2020) Alleviation of nitrogen stress in rice (Oryza sativa) by ceria nanoparticles. Environ Sci-Nano 7(10):2930–2940

    Article  CAS  Google Scholar 

  • Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23(8):1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Wang Y, Lu Q, Wen H, Han B, Chen S, Zheng X, Lin R (2020) Responses of glutathione and phytochelatins biosysthesis in a cadmium accumulator of Perilla frutescens (L.) Britt. Under cadmium contaminated conditions. Ecotoxicol Environ Saf 201:110805

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Hu L, Du Z, Sun X, Amombo E, Fan J, Fu J (2014) Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L.) Pers]. PLoS ONE 9(12):e115279

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Yin HX, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28:325–333

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhu Y, Ge Q, Li Y, Sun J, Zhang Y, Liu X (2012) Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol 196(1):125–138

    Article  CAS  PubMed  Google Scholar 

  • Zemanova V, Pavlik M, Pavlikova D (2017) Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species. PLoS ONE 12(5):e0177963

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng F, Chen S, Miao Y, Wu F, Zhang G (2008) Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environ Pollut 155(2):284–289

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen T, Liao Y, Reid BJ, Chi H, Hou Y, Cai C (2016) Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L.): a field study. Environ Pollut 216:819–825

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Zheng C, Hu YT, Jiang T, Liu Y, Dong NY, Yang JL, Zheng SJ (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant Cell Environ 34(7):1055–1064

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the China National Natural Sciences Foundation (32070314 and 31772383), the Science and technology Innovation Fund project of Shanxi Agricultural University (2020BQ24 and 2020QC13) and the Basic Research Program of Shanxi Province (Free Exploration) (20210302124369 and 20210302124065).

Author information

Authors and Affiliations

Authors

Contributions

Ruting Wang: conceptualization, data curation, formal analysis and writing-original draft. Liangliang Sun: methodology and software. Ping Zhang: formal analysis. Jinpeng Wan: methodology, software and writing-review & editing. Jin Xu and Yibo Wang: project administration, re-sources, writing-review & editing.

Corresponding authors

Correspondence to Yibo Wang or Jin Xu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Communicated by Naser A. Anjum.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Sun, L., Zhang, P. et al. Zinc oxide nanoparticles alleviate cadmium stress by modulating plant metabolism and decreasing cadmium accumulation in Perilla frutescents. Plant Growth Regul 100, 85–96 (2023). https://doi.org/10.1007/s10725-022-00938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00938-2

Keywords

Navigation