Skip to main content
Log in

Histone deacetylase gene SlHDA3 is involved in drought and salt response in tomato

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Histone deacetylation, one of the vital modifying factors of post-translational modifications, is catalyzed by histone deacetylase. The genes of histone deacetylase (HDACs) play critical roles in responses to various stress. However, the detailed functions of most SlHDAC members in tomato remain unknown. In this work, we found that a histone deacetylase, SlHDA3, is involved in the response to NaCl and drought abiotic stresses. The expression of SlHDA3 was also induced significantly by NaCl, drought stress and hormone treatments. Upon silencing of SlHDA3 in tomato, the RNAi transgenic plants presented depressed tolerance to drought and salt stresses compared with Wild-type (WT) tomato. The results of the sensitivity experiment analysis indicated that the length of hypocotyl and root in RNAi plants were more inhibited by ABA and salt stress compared to those in WT plants at the post-germination stage. More serious growth status was exhibited in SlHDA3 transgenic plants under salt and drought stress, as evaluated by a series of physiological parameters related to stress responses, such as decreased Survival ratio (RWC), survival rate, Abscisic acid (ABA) content, chlorophyll content and Catalase (CAT) activity, and increased Malondialdehyde (MDA) and proline contents. In addition, the expression analysis of transgenic plants by quantitative reverse transcription-PCR (qRT-PCR) showed that the transcripts of genes associated with responses to abiotic stress were down-regulated under salt-stressed conditions. In summary, SlHDA3 acts as a stress-responsive gene, plays a role in the positive regulation of abiotic stress tolerance, and may be one of the new target genes in the engineering breeding of salt- and drought-tolerant tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HDACs:

Histone deacetylases

HATs:

Histone acetyltransferases

ABA:

Abscisic acid

CAT:

Catalase

GA:

Gibberellin acid

IAA:

Indole-3-acetic acid

MDA:

Malondialdehyde

Pro:

Proline

qRT-PCR:

quantitative reverse transcription-PCR

ROS:

Reactive oxygen species

SA:

Salicylic acid

WT:

Wild-type

RWC:

Relative water content

References

  • Abdelkareem A, Thagun C, Nakayasu M, Mizutani M, Hashimoto T, Shoji T (2017) Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochem Biophys Res Commun 489(2):206–210. https://doi.org/10.1016/j.bbrc.2017.05.132

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, Suda K, Kurabayashi A, Suzuki T, Tsugane T, Watanabe M, Ooga K, Torii M, Narita T, Shin IT, Kohara Y, Yamamoto N, Takahashi H, Watanabe Y, Egusa M, Kodama M, Ichinose Y, Kikuchi M, Fukushima S, Okabe A, Arie T, Sato Y, Yazawa K, Satoh S, Omura T, Ezura H, Shibata D (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 11:210. https://doi.org/10.1186/1471-2164-11-210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aufsatz W, Mette MF, van der Winden J, Matzke M, Matzke AJM (2002) HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO 21(24):6832–6841. https://doi.org/10.1093/emboj/cdf663

    Article  CAS  Google Scholar 

  • Benhamed M, Bertrand C, Servet C, Zhou DX (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18(11):2893–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, Quesneville H, Alseekh S, Sørensen I, Lichtenstein G, Fich EA, Conte M, Keller H, Schneeberger K, Schwacke R, Ofner I, Vrebalov J, Xu Y, Osorio S, Aflitos SA, Schijlen E, Jiménez-Goméz JM, Ryngajllo M, Kimura S, Kumar R, Koenig D, Headland LR, Maloof JN, Sinha N, van Ham RCHJ, Lankhorst RK, Mao L, Vogel A, Arsova B, Panstruga R, Fei Z, Rose JKC, Zamir D, Carrari F, Giovannoni JJ, Weigel D, Usadel B, Fernie AR (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46(9):1034–1038. https://doi.org/10.1038/ng.3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buszewicz D, Archacki R, Palusiński A, Kotliński M, Fogtman A, Iwanicka-Nowicka R, Sosnowska K, Kuciński J, Pupel P, Olędzki J, Dadlez M, Misicka A, Jerzmanowski A, Koblowska MK (2016) HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. Plant Cell Environ 39(10):2108–2122. https://doi.org/10.1111/pce.12756

    Article  CAS  PubMed  Google Scholar 

  • Cardenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S, Giri AP, Goossens A, Burdman S, Aharoni A (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun 7:10654. https://doi.org/10.1038/ncomms10654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LT, Wu K (2010) Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav 5(10):1318–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LT, Luo M, Wang YY, Keqiang W (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61(12):3345–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Sun YF, Kai WB, Liang B, Zhang YS, Zhai XW, Jiang L, Du YW, Leng P (2016) Interactions of ABA signaling core components (SlPYLs, SlPP2Cs, and SlSnRK2s) in tomato (Solanum lycopersicon). J Plant Physiol. https://doi.org/10.1016/j.jplph.2016.07.016

    Article  PubMed  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JA (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50(10):1187–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danquah A, De Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32(1):40–52

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2010) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876

    Article  Google Scholar 

  • Gaffe J, Lemercier C, Alcaraz JP, Kuntz M (2011) Identification of three tomato flower and fruit MADS-box proteins with a putative histone deacetylase binding domain. Gene 471:19–26

    Article  CAS  PubMed  Google Scholar 

  • Georgieva EI, López-Rodas G, Sendra R, Grbner P, Loidl P (1991) Histone acetylation in Zea mays II: biological significance of post-translational histone acetylation during embryo germination. J Biol Chem 266(28):18751–18760

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez D, Bowen AJ, Carroll TS, Conlan RS (2007) The transcription corepressor leunig interacts with the histone deacetylase HDA19 and mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription. Mol Cell Biol 27(15):5306–5315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu X, Jiang D, Yang W, Jacob Y, Michaels SD, He Y, Chen X (2011) Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLoS Genet 7(11):e1002366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JE (2022) Histone deacetylase gene SlHDT1 regulates tomato fruit ripening by affecting carotenoid accumulation and ethylene biosynthesis. Plant Sci 318:111235. https://doi.org/10.1016/j.plantsci.2022.111235

    Article  CAS  PubMed  Google Scholar 

  • Guo JE, Hu Z, Li F, Zhang L, Yu X, Tang B, Chen G (2017a) Silencing of histone deacetylase SlHDT3 delays fruit ripening and suppresses carotenoid accumulation in tomato. Plant Sci 265:29–38

    Article  CAS  PubMed  Google Scholar 

  • Guo JE, Hu Z, Guo X, Zhang L, Yu X, Zhou S, Chen G (2017b) Molecular characterization of nine tissue-specific or stress-responsive genes of histone deacetylase in tomato (Solanum lycopersicum). J Plant Growth Regul. 36(3):566–577

    Article  CAS  Google Scholar 

  • Guo JE, Hu Z, Zhu M, Li F, Zhu Z, Lu Y, Chen G (2017c) The tomato histone deacetylase SlHDA1 contributes to the repression of fruit ripening and carotenoid accumulation. Sci Rep 7(1):7930. https://doi.org/10.1038/s41598-017-08512-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JE, Hu Z, Yu X, Li A, Li F, Wang Y, Tian S, Chen G (2018) A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Rep 37(1):125–135

    Article  CAS  PubMed  Google Scholar 

  • Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri AP, Aharoni A (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Sci 341(6142):175–179. https://doi.org/10.1126/science.1240230

    Article  CAS  PubMed  Google Scholar 

  • Ji K, Kai W, Zhao B, Sun Y, Yuan B, Dai S, Li Q, Chen P, Wang Y, Pei Y (2014) SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening. J Exp Bot 18:5243–5255

    Article  Google Scholar 

  • Jong-Myong K, Kim TT, Junko I, Akihiro M, Hiroshi K, Motoaki S (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53(5):847

    Article  Google Scholar 

  • Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcn133

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim W, Latrasse D, Servet C, Zhou DX (2013) Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19. Biochem Biophys Res Commun 432(2):394–398

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Thakur JK, Prasad M (2021) Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 78(10):4467–4486

    Article  CAS  PubMed  Google Scholar 

  • Lei B, Berger F (2020) H2A variants in Arabidopsis: versatile regulators of genome activity. Plant Commun 1(1):100015

    Article  PubMed  Google Scholar 

  • Li J, Chitwood J, Menda N, Mueller L, Hutton SF (2018) Linkage between the I-3 gene for resistance to Fusarium wilt race 3 and increased sensitivity to bacterial spot in tomato. Theor Appl Genet 131(1):145–155. https://doi.org/10.1007/s00122-017-2991-4

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li LC, Chen WQ, Chen X, Xu ZH, Bai SN (2013) HDA18 affects cell fate in Arabidopsis root epidermis via histone acetylation at four kinase genes. Plant Cell 25(1):257–269. https://doi.org/10.1105/tpc.112.107045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XC, Yang SG, Zhao ML, Luo CW, Chen CY (2014) Transcriptional repression by histone deacetylases in plants. Mol Plant. 7(5):764–772

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012a) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Wang YY, Liu X, Yang S, Wu K (2012b) HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot 63(8):3297–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Yu CW, Chen FF, Zhao L, Tian G, Liu X, Cui Y, Yang JY, Wu K (2012c) Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genet 8(12):e1003114. https://doi.org/10.1371/journal.pgen.1003114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15(8):1689–1703. https://doi.org/10.1105/tpc.012963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuba Y, Nguyen TT, Wiegert K, Falara V, Gonzales-Vigil E, Leong B, Schafer P, Kudrna D, Wing RA, Bolger AM, Usadel B, Tissier A, Fernie AR, Barry CS, Pichersky E (2013) Evolution of a complex locus for terpene biosynthesis in solanum. Plant Cell 25(6):2022–2036. https://doi.org/10.1105/tpc.113.111013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming L (2015) Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant J 82(82):925–936

    Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. BBA - Gene Regulatory Mechanisms 1819(2):97–103

    CAS  PubMed  Google Scholar 

  • Nakayasu M, Shioya N, Shikata M, Thagun C, Abdelkareem A, Okabe Y, Ariizumi T, Arimura GI, Mizutani M, Ezura H, Hashimoto T, Shoji T (2018) JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. Plant J 94(6):975–990. https://doi.org/10.1111/tpj.13911

    Article  CAS  PubMed  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914. https://doi.org/10.1093/jxb/eri285

    Article  CAS  PubMed  Google Scholar 

  • Nitsch LM, Oplaat C, Feron R, Ma Q, Wolters-Arts M, Hedden P, Mariani C, Vriezen WH (2009) Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1. Planta 229(6):1335–1346. https://doi.org/10.1007/s00425-009-0913-7

    Article  CAS  PubMed  Google Scholar 

  • Ofori PA, Mizuno A, Suzuki M, Martinoia E, Reuscher S, Aoki K, Shibata D, Otagaki S, Matsumoto S, Shiratake K (2018) Genome-wide analysis of ATP binding cassette (ABC) transporters in tomato. PLoS ONE 13(7):e0200854. https://doi.org/10.1371/journal.pone.0200854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Nomura T, Watanabe B, Ohta D, Yokota T, Miyagawa H, Sakata K, Mizutani M (2006) Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism. Phytochemistry 67(17):1895–1906. https://doi.org/10.1016/j.phytochem.2006.05.042

    Article  CAS  PubMed  Google Scholar 

  • Perrella G, Lopez-Vernaza MA, Carr C, Sani E (2013) Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. Plant Cell 25(9):3491–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pri-Hadash A, Hareven D, Lifschitz E (1992) A meristem-related gene from tomato encodes a dUTPase: analysis of expression in vegetative and floral meristems. Plant Cell 4(2):149–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scofield S, Murray JAH (2006) KNOX gene function in plant stem cell niches. Plant Mol Biol 60(6):929–946

    Article  CAS  PubMed  Google Scholar 

  • Song CP (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17(8):2384–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 46(1):124–33

    Article  CAS  PubMed  Google Scholar 

  • Tahir MS, Tian L (2021) HD2-type histone deacetylases: unique regulators of plant development and stress responses. Plant Cell Rep 40:1603–1615

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146(1):149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Gallusci P, Lang Z (2020) Fruit development and epigenetic modifications. New Phytol 228(3):839–844

    Article  CAS  PubMed  Google Scholar 

  • Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LACJ, Spillane C, Pikaard CS, Fransz P, Peeters AJM (2009) Phytochrome B and Histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 5(9):e1000638. https://doi.org/10.1371/journal.pgen.1000638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448(7154):661–665. https://doi.org/10.1038/nature05960

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Wang J, Fong MP, Chen M, Cao H, Gelvin SB, Chen ZJ (2003) Genetic control of developmental changes induced by disruption of Arabidopsis histone deacetylase 1 (AtHD1) expression. Genetics 165(1):399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Song T, He R, Zeng Y, Xie W, Wu Q, Wang S, Zhou X, Zhang Y (2017) Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci. BMC Genomics 18(1):330. https://doi.org/10.1186/s12864-017-3706-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To TK, Kim JM (2013) Epigenetic regulation of gene responsiveness in Arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00548

    Article  Google Scholar 

  • To TK, Kim JM, Matsui A, Kurihara Y, Morosawa T, Ishida J, Tanaka M, Endo T, Kakutani T, Toyoda T (2011) Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLoS Genet 7(4):e1002055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Yamaguchi-Shinozaki SK (2004) Isolation and functional analysis of arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varotto S, Locatelli S, Canova S, Pipal A, Motto M, Rossi V (2003) Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development. Plant Physiol 133(2):606–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasav AP, Barvkar VT (2019) Phylogenomic analysis of cytochrome P450 multigene family and their differential expression analysis in Solanum lycopersicum L. suggested tissue specific promoters. BMC Genomics 20(1):116. https://doi.org/10.1186/s12864-019-5483-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Kim J, Somers DE  (2012) Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proceedings of the National Academy of Sciences

  • Wang Z, Cao H, Chen F, Liu Y (2014) The roles of histone acetylation in seed performance and plant development. Plant Physiol Biochem 84:125–133. https://doi.org/10.1016/j.plaphy.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu CW (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59(2):225–234

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zhang X, Yang Y, Zhang H, Zhu W, Nie WF (2021) The histone variant Sl_H2A. Z regulates carotenoid biosynthesis and gene expression during tomato fruit ripening. Hortic Res 8(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CW, Liu X, Luo M, Chen C, Lin X (2011) Histone deacetylase6 Interacts with flowering locus D and regulates flowering in Arabidopsis. Plant Physiol. https://doi.org/10.1104/pp.111.174417

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Liu X, Luo M, Yang S, Wu K (2013) Involvement of histone modifications in plant abiotic stress responses. J Integr Plant Biol 55(10):892–901

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Lu J, Zhang J, Wu PY, Yang S, Wu K (2014a) Identification and characterization of histone deacetylases in tomato (Solanum lycopersicum). Front Plant Sci 5:760

    PubMed  Google Scholar 

  • Zhao J, Zhang J, Zhang W, Wu K, Zheng F, Tian L, Liu X, Duan J (2014b) Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice. Front Plant Sci 5:764. https://doi.org/10.3389/fpls.2014.00764

    Article  PubMed  Google Scholar 

  • Zhaofen H, Huimin Y, Zhong Z, David H, Xinjuan L, Jun D, Lining T (2016) AtHD2D gene plays a role in plant growth, development, and response to abiotic stresses in Arabidopsis thaliana. Front Plant Sci 7:114

    Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63(5):591–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Tian S, Qin G (2019) RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biol 20(1):1–23

    Article  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim JM, To TK, Li W (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108(30):12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol 18(1):83. https://doi.org/10.1186/s12870-018-1299-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the Shanxi Province Basic Research Plan (No. 202103021224319 and No. 202103021223384), the Natural Science Foundation of Jiangxi Province (No. 20202BABL215009), and 2019 Lvliang Development Zone’s plan to introduce high-level scientific and technological talents(No. 2019101 and No. 2019106).

Author information

Authors and Affiliations

Authors

Contributions

JG: conducted experiments, wrote the manuscript and revised the manuscript. HW: conceived and designed research. JL and YY: analyzed data. ZZ: contributed new reagents and plant materials. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jun-E Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, JE., Wang, H., Yang, Y. et al. Histone deacetylase gene SlHDA3 is involved in drought and salt response in tomato. Plant Growth Regul 99, 359–372 (2023). https://doi.org/10.1007/s10725-022-00913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00913-x

Keywords

Navigation