Plant material and growing conditions
The seeds of Ipomoea nil cv. Violet (Marutane Seed Co., Kyoto, Japan) were prepared and sown as described by Wilmowicz et al. (2008). The cultivation was conducted under controlled thermal (25 ± 1 °C) and light (LD—8 h darkness/16 h light, fluorescent white cold light and white light lamps of a combined power flux of 18.3 and 6 W/m3, Polam, Warsaw, Poland) conditions for the first 5 days. After this time, one group of the plants were transferred to SD conditions (16 h darkness/8 h light), while the second group were left in the growth chamber under LD conditions (control). During the dark period, all procedures were carried out under green light conditions. The cotyledons without petioles were collected every 2 h throughout the whole diurnal cycle. The material for RNA isolation was immediately frozen in liquid nitrogen and stored at − 80 °C, while tissue fragments for microscopy experiments were processed when fresh. The experiments were repeated at least three times, and the results were presented as an arithmetic mean ± standard error (SE).
Molecular cloning of InGA20ox3 and InGA2ox1 cDNAs
Frozen cotyledons were powdered in liquid nitrogen using mortar and pestle. Total RNA was extracted with a spin-column-based method (GeneMATRIX Universal RNA Purification Kit; EURx, Warsaw, Poland) according to the manufacturer’s guidelines. DNA was removed by deoxyribonuclease I (Fermentas, St. Leon-Rot, Germany). Isolated RNA (1 µg) was reverse transcribed with a Transcriptor High Fidelity cDNA Synthesis Kit (Roche, Mannheim, Germany). Touchdown PCR (96 °C for 600 s; 40 cycles of 96 °C for 60 s, 60–54 °C (InGA20ox3) or 63–57 °C (InGA2ox1) for 45 s and 74 °C for 60 s; 74 °C for 420 s; cooling at 4 °C) was performed in the T3 Thermocycler (Biometra, Göttingen, Germany) with the use of first-strand cDNA (0.1 µg), 1 × buffer B, dNTP mix (0.2 mM), Mg2+ (3 mM), degenerate primers (1 µM) (Table S1), Perpetual Taq DNA PolymeraseHOT START (1.25 U) (EURx) and deionized H2O up to a final volume of 50 µl. The amplified cDNA fragments of InGA20ox3 (773 bp) and InGA2ox1 (665 bp) were isolated, purified from an agarose gel (GeneMATRIX Agarose Out DNA Purification Kit, EURx) and ligated into the pCRII-TOPO vector (from TOPO TA Cloning Kit; Invitrogen, Carlsbad, CA, USA). Next, the plasmids were transferred into chemically competent One Shot Mach1-T1 E. coli cells, which were plated onto Petri dishes containing S-Gal/LB Agar Blend (Sigma-Aldrich, St. Louis, MO,USA) and ampicillin (50 µg/mL) (ICN Polfa Rzeszów, Poland). White colonies were selected and cultured o/n in liquid 2 × LB medium containing ampicillin. DNA plasmids were isolated (GeneMATRIX Plasmid Miniprep DNA Purification Kit, EURx) and sequenced (Genomed, Warsaw, Poland). The full-length cDNAs of the investigated genes were obtained using the 5′-3′FirstChoice RLM-RACE Kit (Ambion Inc., Austin, TX, USA), SuperTaq-Plus Polymerase (Ambion) and designed primers (Table S1). In silico data analyses were performed using BlastN, BlastP, ExPASy (Translate tool, ProtParam) and Phylogeny.fr software.
Expression analysis
cDNAs were obtained from the cotyledons of plants growing under different photoperiodic conditions in the same way as for the molecular cloning for the genes. For each gene amplification, real-time quantitative PCR (qPCR) with specific primers (Table S1) and universal probe library (UPL) hydrolysis probes (Roche) was used. The actin gene (InACT4) was selected as a reference endogenous control for normalization purposes (Glazińska et al. 2014; Marciniak et al. 2017; Wilmowicz et al. 2016b). qPCR with mixtures containing 0.1 µg of cDNA, 0.2 µM FP/RP, 0.05 µM UPL and 1 × LightCycler TaqMan Master Mix (LightCycler TaqMan Master Kit, Roche), was performed in 20 µl volumes in glass capillaries using a LightCycler 2.0 system (Roche). cDNA-free negative controls were included. The reactions were carried out as follows: 96 °C for 600 s; 45 cycles of 96 °C for 10 s, 58 °C (InGA20ox3 and InGA2ox1) and 55 °C (InACT4) for 15 s, 72 °C for 1 s; 40 °C for 30 s. Relative expression was calculated using the standard curves from serial dilutions of cDNAs for both the studied and reference genes. The final values were determined by an automated method (Light Cycler Software 4.0, Roche), which is recommended for all applications. Three independent replications for each cDNA were performed. Statistical analyses and graphical presentation were made by Sigma Plot 2001.
Immunolocalisation of GA3
Cotyledons harvested from 5-day-old I. nil seedlings were fixed in phosphate-buffered saline buffer (1 × PBS, pH 7.2) containing 4% paraformaldehyde (w/v), 0.2% glutaraldehyde (v/v) and 3% EDAC [N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide hydrochloride] (w/v) (Sigma-Aldrich) for 12 h at 4 °C (Lofke et al. 2013). Then, the samples were dehydrated, supersaturated and embedded in BMM resin (butyl methacrylate, methyl methacrylate, 0.5% (w/v) benzoin ethyl ether, 10 mM dithiothreitol; Fluka, Buchs, Switzerland) as Wilmowicz et al. (2016a) previously described. Semi-thin sections (1.5 μm) were cut on an Ultracut microtome (Reichert-Jung, Germany) and then placed on glass slides covered with Biobond (BBInternational, UK).
The sections were then incubated o/n at 4 °C with the primary antibody (anti-GA3) (Agrisera, Vännäs, Sweden) diluted 1:50 in 1% bovine serum albumin (BSA) in 1 × PBS (pH 7.2). Next, a DyLight Alexa 488 conjugated IgG diluted 1:250 in PBS buffer for 2 h at 37 °C served as the secondary antibody. A control reaction (Fig. S4) was carried out by omitting the incubation with primary antibody. The samples were observed in a Leica DMI4000B inverted microscope using the filters: BP365, FT395, and LP397.