Skip to main content
Log in

The calcium-dependent protein kinase gene VaCPK29 is involved in grapevine responses to heat and osmotic stresses

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ca2+-dependent protein kinases (CDPKs or CPKs) are essential primary sensors of Ca2+ in plants and are known to play important roles in plant abiotic and biotic stress responses. Vitis amurensis is a wild grapevine species with a high level of cold and disease resistance. It has previously been shown that transcription of 10 CDPK genes of V. amurensis was elevated under salt, desiccation, high mannitol, cold, and heat stress conditions. Expression of VaCPK29 was induced under high and low temperatures, water deficit, and high mannitol stress in plant cuttings of V. amurensis. The present study revealed that the callus cell cultures of V. amurensis and soil-grown plants of Arabidopsis thaliana overexpressing VaCPK29 exhibited higher tolerance to heat and high mannitol stress in comparison with the control transformed with the empty vector. Cold, salt, and drought stress tolerance of the transgenic V. amurensis calli and A. thaliana plants was comparable to that of the controls. The stress-responsive genes AtDREB1A, AtDREB2A, AtRD29A, AtRD29B, and AtABF3 were up-regulated in the VaCPK29-overexpressing A. thaliana plants under heat stress. Taken together, the data indicate that the VaCPK29 gene may act as a positive regulator in the grapevine response to heat and osmotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdeen A, Schnell J, Miki B (2010) Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genom 11:69

    Article  Google Scholar 

  • Aleynova OA, Dubrovina AS, Manyakhin AY, Karetin YA, Kiselev KV (2015) Regulation of resveratrol production in Vitis amurensis cell cultures by calcium-dependent protein kinases. Appl Biochem Biotechnol 175:1460–1476

    Article  CAS  PubMed  Google Scholar 

  • Aleynova-Shumakova OA, Dubrovina AS, Manyakhin AY, Karetin YA, Kiselev KV (2014) VaCPK20 gene overexpression significantly increased resveratrol content and expression of stilbene synthase genes in cell cultures of Vitis amurensis Rupr. Appl Microbiol Biotechnol 98:5541–5549

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012a) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012b) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt stress tolerance and blast disease resistance. Plant J 69:26–36

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta 1820:1283–1293

    Article  PubMed  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18:30–40

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Fasoli M, Tornielli GB, Dal Santo S, Pezzotti M, Zhang L, Cai B, Cheng ZM (2013a) The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family. PLoS ONE 8:e80818

  • Chen J, Xue B, Xia X, Yin W (2013b) A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochem Biophys Res Commun 441:630–636

  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YS, Kim YM, Hwang OJ, Han YJ, Kim SY, Kim JI (2013) Overexpression of Arabidopsis ABF3 gene confers enhanced tolerance to drought and heat stress in creeping bentgrass. Plant Biotechnol Rep 7:165–173

    Article  Google Scholar 

  • Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genom 11:2–13

    Article  CAS  Google Scholar 

  • Dubrovina AS, Kiselev KV, Khristenko VS (2013) Expression of calcium-dependent protein kinase (CDPK) genes under abiotic stress conditions in wild-growing grapevine Vitis amurensis. J Plant Physiol 170:1491–1500

    Article  CAS  PubMed  Google Scholar 

  • Dubrovina AS, Kiselev KV, Khristenko VS, Aleynova OA (2015) VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J Plant Physiol 185:1–12

    Article  CAS  PubMed  Google Scholar 

  • Dubrovina AS, Kiselev KV, Khristenko VS, Aleynova OA (2016a) VaCPK21, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., is involved in grape response to salt stress. Plant Cell Tissue Organ Cult 124:137–150

  • Dubrovina AS, Kiselev KV, Aleynova OA (2016b) Influence of overexpression of the true and false alternative transcripts of calcium-dependent protein kinase CPK9 and CPK3a genes on the growth, stress tolerance, and resveratrol content in Vitis amurensis cell cultures. Acta Physiol Plant 38:78

  • Franz S, Ehlert B, Liese A, Kurth J, Cazalé AC, Romeis T (2011) Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol Plant 4:83–96

    Article  CAS  PubMed  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KA, Grill E, Romeis T, Hedrich R (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107:8023–8028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. BioChemistry 33:7267–7277

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93:2054–2059

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jaworski K, Szmidt-Jaworska A, Kopcewicz J (2011) Two calcium dependent protein kinases are differently regulated by light and have different activity patterns during seedling growth in Pharbitis nil. Plant Growth Regul 65:369–379

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Kang JY, Kim SY (2004) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459–466

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV, Dubrovina AS, Bulgakov VP (2009) Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 82:647–655

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV, Shumakova OA, Manyakhin AY, Mazeika AN (2012) Influence of calcium influx induced by the calcium ionophore, A23187, on resveratrol content and the expression of CDPK and STS genes in the cell cultures of Vitis amurensis. Plant Growth Regul 68:371–381

    Article  CAS  Google Scholar 

  • Kiselev KV, Dubrovina AS, Shumakova OA, Karetin YA, Manyakhin AY (2013) Structure and expression profiling of a novel calcium-dependent protein kinase gene, CDPK3a, in leaves, stems, grapes, and cell cultures of wild-growing grapevine Vitis amurensis Rupr. Plant Cell Rep 32:431–442

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV, Tyunin AP, Ogneva ZV, Dubrovina AS (2015) Age-associated alterations in the somatic mutation level in Arabidopsis thaliana. Plant Growth Regul 75:493–501

    Article  CAS  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liese A, Romeis T (2013) Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochim Biophys Acta-Mol. Cell Res 7:1582–1589

    Google Scholar 

  • Liu L, Li H (2013) Review: Research progress in amur grape, Vitis amurensis Rupr. Can J Plant Sci 93:565–575

    Article  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locato V, Gadaleta C, De Gara L, De Pinto MC (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ 31:1606–1619

    Article  CAS  PubMed  Google Scholar 

  • Ma SY, Wu WH (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65:511–518

    Article  CAS  PubMed  Google Scholar 

  • Ma YY, Zhang YL, Shao H, Lu J (2010) Differential physio-biochemical responses to cold stress of cold-tolerant and non-tolerant grapes (Vitis L.) from China. J Agron Crop Sci 196:212–219

    Article  CAS  Google Scholar 

  • Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    Article  CAS  PubMed  Google Scholar 

  • Schulz P, Herde M, Romeis T (2013) Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol 163:523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen YY, Duan CQ, Liang XE, Zhang DP (2004) Membrane-associated protein kinase activities in the developing mesocarp of grape berry. J Plant Physiol 161:15–23

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Tian GW, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57:503–516

    Article  CAS  PubMed  Google Scholar 

  • Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM (2014) Calcium-Dependent Protein Kinases in plants: evolution, expression and function. Plant Cell Physiol 55:551–569

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Weckwerth P, Ehlert B, Romeis T (2015) ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling. Plant Cell Environ 38:544–558

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Hu W, Deng X, Zhang Y, Liu X, Zhao X, Luo Q, Jin Z, Li Y, Zhou S, Sun T, Wang L, Yang G, He G (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Wernimont AK, Artz JD, Finerty, Lin YH, Amani M, Allali-Hassani A, Senisterra G, Vedadi M, Tempel W, Mackenzie F et al (2010) Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Nat Struct Mol Biol 17:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu XC, Li MJ, Gao GF, Feng HZ, Geng XQ, Peng CC, Zhu SY, Wang XJ, Shen YY, Zhang DP (2006) Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiol 140:58–579

    Article  Google Scholar 

  • Yu XC, Zhu SY, Gao GF, Wang XJ, Zhao R, Zou KQ, Wang XF, Zhang XY, Wu FQ, Peng CC, Zhang DP (2007) Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Mol Biol 64:31–538

    Article  Google Scholar 

  • Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Han YT, Zhao FL, Hu Y, Gao YR, Ma YF, Zheng Y, Wang YJ, Wen YQ (2015) Genome-wide identification and expression analysis of the CDPK gene family in grape, Vitis spp. BMC Plant Biol 15:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo R, Hu R, Chai G, Xu M, Qi G, Kong Y, Zhou G (2013) Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Mol Biol Rep 40:2645–2662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the Russian Science Foundation (14-14-00366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra S. Dubrovina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1595 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovina, A.S., Kiselev, K.V., Khristenko, V.S. et al. The calcium-dependent protein kinase gene VaCPK29 is involved in grapevine responses to heat and osmotic stresses. Plant Growth Regul 82, 79–89 (2017). https://doi.org/10.1007/s10725-016-0240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0240-5

Keywords

Navigation