Skip to main content
Log in

Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement

  • 20 structure
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Calcium is an important second messenger involved in abscisic acid (ABA) signal transduction. Calcium-dependent protein kinases (CDPKs) are the best characterized calcium sensor in plants and are believed to be important components in plant hormone signaling. However, in planta genetic evidence has been lacking to link CDPK with ABA-regulated biological functions. We previously identified an ABA-stimulated CDPK from grape berry, which is potentially involved in ABA signaling. Here we report that heterologous overexpression of ACPK1 in Arabidopsis promotes significantly plant growth and enhances ABA-sensitivity in seed germination, early seedling growth and stomatal movement, providing evidence that ACPK1 is involved in ABA signal transduction as a positive regulator, and suggesting that the ACPK1 gene may be potentially used for elevating plant biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcription activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1-1 and abi-2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785–1798

    Article  PubMed  CAS  Google Scholar 

  • Charrier B, Champion A, Henry Y, Kreis M (2002) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol 130:577–590

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Fan LM, Zhao ZX, Assmann SM (2004) Guard cells: a dynamic signaling model. Curr Opin Plant Biol 7:537–546

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(supp l):S15–S45

    PubMed  CAS  Google Scholar 

  • Finkelstein R, Rock C (2002) Abscisic acid biosynthesis and signaling. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    Article  PubMed  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK superfamily of protein kinases. New Phytol 151:175–183

    Article  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs: a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33:7267–7277

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon AC (1991) A calcium-dependence protein kinase with a regulatory domain similar to calmodulin. Science 252:951–954

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    Article  PubMed  CAS  Google Scholar 

  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Leon-Kloosterziel KM, Schwartz SH, Zeevaart JAD (1998) The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem 36:83–89

    Article  CAS  Google Scholar 

  • Kurkela S, Borg-Franck M (1992) Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol 19:689–692

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Ann Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: Features of a calcium-modulated protein phosphatase. Science 264:1448–1452

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    Article  PubMed  CAS  Google Scholar 

  • Li WG, Komatsu S (2000) Cold stress-induced calcium-dependent protein kinase(s) in rice (Oryza sativa L.) seedling stem tissues. Theor Appl Genet 101:355–363

    Article  CAS  Google Scholar 

  • Lang V, Palva ET (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 20:951–962

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NHA (2001) Postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  PubMed  CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(supp l):S389–S400

    PubMed  CAS  Google Scholar 

  • Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant J 25:295–303

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455

    Article  PubMed  CAS  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper J, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell-S-type anion- and Ca2+-permiable channels and stomatal closure. Plos Biol 4:1794–1762

    Article  CAS  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–676

    Article  CAS  Google Scholar 

  • Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924

    Article  PubMed  CAS  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2001) Unraveling response-specificity in Ca2+ signaling in plant cells. New Phytol 151:7–33

    Article  CAS  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    Article  CAS  Google Scholar 

  • Sheen J (1996) Ca++-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci USA 95:975–980

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826

    Article  PubMed  CAS  Google Scholar 

  • Sneden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yoon GM, Cho HS, Ha HJ, Liu JR, Lee HP (1999) Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol Biol 39:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Yu XC, Li MJ, Gao GF, Feng HZ, Geng XQ, Peng CC, Zhu SY, Wang XJ, Shen YY, Zhang DP (2006) Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiol 140:558–579

    Article  PubMed  CAS  Google Scholar 

  • Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Ann Rev Plant Physiol Plant Mol Biol 49:697–725

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by National Natural Science Foundation of China (grant nos. 30421002, 30330420, 30671444 and 30471193 to D.P.Z.), and by the National Key Basic Research Program of China (grant no. 2003CB114302 to D.P.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Peng Zhang.

Additional information

The authors Xiang-Chun Yu, Sai-Yong Zhu, and Gui-Feng Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, XC., Zhu, SY., Gao, GF. et al. Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Mol Biol 64, 531–538 (2007). https://doi.org/10.1007/s11103-007-9172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9172-9

Keywords

Navigation