Skip to main content

Advertisement

Log in

Identification and characterization of genes associated with thermo-tolerance using virus induced gene silencing in Nicotiana benthamiana

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Crop acclimatization to elevated temperature conditions often demands transcriptional reprogramming of an array of genes to evoke protection from heat stress. Previously, we addressed such question in potato and identified GLP1 (Germin-like protein 1), nsLTP (Non specific lipid transfer protein), PI-PLC (phosphoinositide-specific phospholipase-c), CHP (Conserved hypothetical protein) and RPL4 (60 S Ribosomal L4/L1 protein) as candidate thermo-tolerant genes. Herein, Nicotiana benthamiana knockdown lines were developed to study their functional relevance in high-temperature stress using virus induced gene silencing (VIGS). Among all the VIGS lines tested, silencing of GLP1 and CHP showed significant reduction (more than 75 %) in their endogenous transcript levels, whereas the expression of nsLTP, PI-PLC and RPL4 was reduced by 50 %. Thus suggesting the silencing of endogenous target gene was successful using VIGS. Among those genes tested, VIGS knockdown lines generated against GLP1 and nsLTP produced a very strong hypersensitive phenotype under gradual heat stress and sudden heat shock conditions. Knockdown of GLP1 and nsLTP also showed higher chlorophyll degradation and less cell viability upon stress compared with mock plants. Interestingly, down-regulation of PI-PLC plants showed thermo-sensitive to sudden heat shock, whereas CHP and RPL4 silenced plants showed relatively less sensitive phenotypes. Most importantly, silencing of GLP1 and nsLTP genes compromised acclimation induced H2O2 accumulation, which subsequently failed to activate reactive oxygen species (ROS) scavenging signaling pathways that controlling transcription of antioxidant and other heat stress related genes. These data suggest that GLP1 or nsLTP dependent H2O2 production is required for acquiring thermo-tolerance mediated via activation of ROS-related genes. These analyses will aid in an effort to engineer broad spectrum thermo-tolerance in economically important crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banerjee J, Maiti MK (2010) Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem Biophys Res Commun 394(1):178–183

    Article  CAS  PubMed  Google Scholar 

  • Banerjee J, Das N, Dey P, Maiti MK (2010) Transgenically expressed rice germin-like protein1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochem Biophys Res Commun 402(4):637–643

    Article  CAS  PubMed  Google Scholar 

  • Bao H, Chen X, Lv S, Jiang P, Feng J, Fan P, Nie L, Li Y (2014) Virus induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ aminobutyric acid metabolic pathway. Plant Cell Environ. doi:10.1111/pce.12419

    PubMed  Google Scholar 

  • Berna A, Bernier F (1999) Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol Biol 39:539–549

    Article  CAS  PubMed  Google Scholar 

  • Bokszczanin KL, Solanaceae Pollen Thermo-tolerance Initial Training Network (SPOT-ITN) Consortium, Fragkostefanakis S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermo-tolerance. Front Plant Sci 4:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carter C, Thornburg RW (2000) Tobacco nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275:36726–36733

    Article  CAS  PubMed  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermo-tolerance in Arabidopsis. Plant Physiol 143(1):251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Burch-Smith TM, Liu Y, Mamillapalli P, Dinesh-Kumar SP (2007) A ligation-independent cloning tobacco rattle virus vector for high-throughput virus induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol 145(4):1161–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangadhar BH, Yu JW, Sajeesh K, Park SW (2014) A systematic exploration of high-temperature stress responsive genes in potato using large-scale yeast functional screening. Mol Genet Genomics 289(2):185–201

    Article  CAS  PubMed  Google Scholar 

  • Gangadhar BH, Sajeesh K, Yu JW, Park SW (2015) Over-expression of a gene encoding hydrogen peroxide-generating germin-like protein induces thermo-tolerance in potato. Plant Cell Tissue Organ Cult (in press)

  • Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, de Jong W, Fogelman E (2009) Transcriptomic profiling of heat stress response in potato periderm. J Exp Bot 60:4411–4421

    Article  CAS  PubMed  Google Scholar 

  • Guan MX, Chai RH, Kong X, Liu XM (2013) Isolation and characterization of a lipid transfer protein gene (BplLTP1) from Betula platyphylla. Plant Mol Biol Rep 31:991–1001

    Article  CAS  Google Scholar 

  • Heath RL, Parker L (1968) Photoperoxidation in isolated chloroplasts. I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hemavathi, Upadhyaya CP, Akula N, Kim HS, Kim JH, Ho OM, Chun SC, Kim DH, Park SW (2011) Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing d-galacturonic acid reductase gene in response to various abiotic stresses. Mol Breed 28:105–115

    Article  CAS  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high-temperature stress. Proc Natl Acad Sci USA 97(8):4392–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Liu R, Li Y, Wang W, Tai F, Xue R, Li C (2010) Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul 60(3):225–235

    Article  CAS  Google Scholar 

  • Jiang X, Zhang C, Lü P, Jiang G, Liu X, Dai F, Gao J (2014) RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress related genes in rose petals. Plant Biotechnol J 12(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Kappachery S, Yu JW, Baniekal Hiremath G, Park SW (2013) Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. C R Biol 336:530–545

    Article  PubMed  Google Scholar 

  • Kappachery S, Baniekal Hiremath G, Yu JW, Park SW (2015) Effect of over-and under-expression of glyceraldehyde3-phosphate dehydrogenase on tolerance of plants to water-deficit stress. Plant Cell Tissue Organ Cult 121:97–107

    Article  CAS  Google Scholar 

  • Lou Y, Baldwin IT (2006) Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol 140:1126–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangelsen E, Kilian J, Harter K, Jansson C, Wanke D, Sundberg E (2011) Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. Mol Plant 4:97–115

    Article  CAS  PubMed  Google Scholar 

  • Masuta C, Furuno M, Tanaka H, Yamada M, Koiwai A (1992) Molecular cloning of a cDNA clone for tobacco lipid transfer protein and expression of the functional protein in Escherichia coli. FEBS Lett 311(2):119–123

    Article  CAS  PubMed  Google Scholar 

  • Mullarkey M, Jones P (2000) Isolation and analysis of thermo-tolerant mutants of wheat. J Exp Bot 51:139–146

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M, Udayakumar M, Mysore KS (2014) A high-throughput virus induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biol 13:193

    Article  CAS  Google Scholar 

  • Sarowar S, Kim YJ, Kim KD, Hwang BK, Ok SH, Shin JS (2009) Over-expression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Rep 28:419–427

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj MG, Burow G, Burke JJ, Belamkar V, Puppala N, Burow MD (2011) Heat stress screening of peanut (Arachis hypogaea L.) seedlings for acquired thermo-tolerance. Plant Growth Regul 65:83–91

    Article  CAS  Google Scholar 

  • Senthil-Kumar M, Udayakumar M (2010) Post transcriptional gene silencing methods for functional characterization of abiotic stress responsive genes in plants. In: Catalano AJ (ed) Gene silencing: theory, techniques and applications. Nova Science Publishers Inc., New York

    Google Scholar 

  • Senthil-Kumar M, Govind G, Kang L, Mysore KS, Udayakumar M (2007) Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus induced gene silencing. Planta 225(3):523–539

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kanwar P, Pandey A, Tyagi AK, Sopory SK, Kapoor S, Pandey GK (2013) Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS One 8(4):e62494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Liu Q, Hu B, Wu W (2015) Comparative transcriptome profiling of Arabidopsis Col-0 in responses to heat stress under different light conditions. Plant Growth Regul. doi:10.1007/s10725-015-0126-y

    Google Scholar 

  • Torres-Schumann S, Godoy JA, Pintor-Toro JA (1992) A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol 18:749–757

    Article  CAS  PubMed  Google Scholar 

  • Valipour M (2013) Need to update of irrigation and water resources information according to the progresses of agricultural knowledge. Agrotechnology S10:e001

    Google Scholar 

  • Valipour M, Mousavi SM, Valipour R, Rezaei E (2012) SHCP: soil heat calculator program. IOSR J Appl Phys 2(3):24–32

    Article  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inze D, Van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100(26):16113–16118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan X, Tan J, Lu S, Lin C, Hu Y, Guo Z (2009) Increased tolerance to oxidative stress in transgenic tobacco expressing a wheat oxalate oxidase gene via induction of antioxidant enzymes is mediated by H2O2. Physiol Plant 136(1):30–44

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zang XS, Kabir MR, Liu KL, Liu ZS, Ni ZF, Yao YY, Hu ZR, Sun QX, Peng HR (2014) A wheat lipid transfer protein 3 could enhance the basal thermo-tolerance and oxidative stress resistance of Arabidopsis. Gene 550:18–26

    Article  CAS  PubMed  Google Scholar 

  • Yamahara T, Shiono T, Suzuki T, Tanaka K, Takio S, Sato K, Yamazaki S, Satoh T (1999) Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata. J Biol Chem 274:33274–33278

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Jin C, Wu L, Hou M, Dou S, Pan Y (2014) Expression analysis of a stress-related phosphoinositide-specific phospholipase C gene in wheat (Triticum aestivum L.). PLoS One 9(8):e105061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012) Phosphoinositide-specific phospholipase C9 is involved in the thermo-tolerance of Arabidopsis. Plant J 69(4):689–700

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Eun M, Han CD, Kumar C, Pereira A, Ramachandran S et al (2007) Transposon insertional mutants: a resource for rice functional genomics. Rice functional genomics. Springer, New York, pp 223–271

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the next-Generation Bio Green 21 Program (No. PJ008182), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baniekal Hiremath Gangadhar or Jae Woong Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 6S

(a): APX (b): CAT (c): SOD and (d): GR enzyme activities (nmol/ min/ mg of protein) in GLP1 and nsLTP silenced lines and mock plants under non-stress, sudden heat shock and gradual heat stress. Means of three independent samples and standard errors are presented. The same letter above the column indicates no significant difference at P<0.05. (TIFF 532 kb)

Supplementary material 2 (PDF 522 kb)

Supplementary material 3 (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangadhar, B.H., Sajeesh, K., Venkatesh, J. et al. Identification and characterization of genes associated with thermo-tolerance using virus induced gene silencing in Nicotiana benthamiana . Plant Growth Regul 80, 355–366 (2016). https://doi.org/10.1007/s10725-016-0175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0175-x

Keywords

Navigation