Skip to main content
Log in

Endogenous abscisic acid signaling towards storage reserve filling in developing seed tissues of castor bean (Ricinus communis L.)

  • Brief communication
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA; free form) is a naturally occurring physiological growth hormone of higher plants. A detailed study involving the time course growth of developing seed tissues associated with endogenous levels of free ABA were investigated using a novel enzyme-linked immunosorbent assay. Seed filling in castor (Ricinuc communis L.) endosperm, embryo, and pod is marked with a rapid increase in fresh weight during the mid-developmental stages [21–42 days after pollination (DAP)], followed by a steady decline at the maturation stages (42–63 DAP) accompanied with a rapid lipid synthesis (in endosperm and embryo) during the same period, except for in pod. Endogenous ABA levels in endosperm (0.001–0.32 μg/g) and embryo (0.003–0.13 μg/g) followed a concurrent pattern with seed reserve filling, showing a rapid increase during the mid-developmental stages 21–42 DAP, whereas ABA levels in seed pod (0.2–22.9 μg/g) showed a different accumulation pattern with rapid increase and decline during the early-mid developmental stages, preceded by the maximal increase during the maturation stage (63 DAP). Together, our results provide evidence for the association of endogenous ABA in seed filling as well as in reserve deposition and provides clue for the effective usage of exogenous ABA concentrations in developing seeds with a focus, on improving seed reserve complex in castor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aroca R, Del Mar Alguacil M, Vernieri P, Ruiz-Lozano JM (2008) Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (sitiens). Microb Ecol 56:4–19

    Google Scholar 

  • Barrero JM, Piqueras P, Guzma MG, Serrano R, Rodriguez PL, Ponce MR, Micol JL (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 418:2071–2083

    Article  Google Scholar 

  • Bewley J, Black M (1994) Seeds, physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Carrier DJ, Kendall EJ, Bock CA, Cunningham JE, Dunstan DI (1999) Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. J Exp Bot 337:1359–1364

    Article  Google Scholar 

  • Chen GQ, He X, Liao LP, McKeon TA (2004) 2S albumin gene expression in castor plant (Ricinus communis). J Am Oil Chem Soc 81:867–872

    Article  CAS  Google Scholar 

  • Cohen A, Bray EA (1990) Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182:27–33

    Article  CAS  PubMed  Google Scholar 

  • Cohen A, Plant AP, Moses MS, Bray EA (1991) Organ-specific and environmentally regulated expression of two abscisic acid-induced genes of tomato. Plant Physiol 97:1367–1374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng A, Tan W, He S, Liu W, Nan T, Li Z, Wang B, Li QX (2008) Monoclonal antibody-based enzyme linked immunosorbent assay for the analysis of jasmonates in plants. J Integr Plant Biol 50:1046–1052

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg AJ, Mascarenhas JP (1985) Abscisic acid and the regulation of synthesis of specific seed proteins and their messenger RNA’s during culture of soybean embryos. Planta 166:505–514

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Somerville C (1989) Abscisic acid or high osmoticum promote accumulation of long-chain fatty acids in developing embryos of Brassica napus. Plant Sci 67:213–217

    Article  Google Scholar 

  • Finkelstein R, Srinivas S, Gampala L, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

    Google Scholar 

  • Fitzpatrick AH, Shrestha N, Bhandari J, Crowell DN (2011) Roles for farnesol and ABA in Arabidopsis flower development. Plant Signal Behav 6:1189–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenwood JS, Bewley JD (1981) Seed development in Ricinus communis (castor bean). I, descriptive morphology. Can J Bot 60:1751–1760

    Article  Google Scholar 

  • Hetherington AM, Quatrano RS (1991) Mechanisms of action of abscisic acid at the cellular level. New Phytol 119:9–32

    Article  CAS  Google Scholar 

  • Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ascorbate peroxidase 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot 12:3273–3283

    Article  Google Scholar 

  • Hsu FC (1979) Abscisic acid accumulation in developing seeds of Phaseolus vulgaris L. Plant Physiol 63:552–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kharenko OA, Zaharia LI, Giblin M, Ekic VC, Taylor DC, Palmer CD, Abrams SR, Loewen MC (2011) Abscisic acid metabolism and lipid accumulation of a cell suspension culture of Lesquerella fendleri. Plant Cell Tissue Organ Cult 105:415–422

    Article  CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan QH, Li MJ, Peng CC, Zhang N, Zou X, Zou KQ, Wang XL, Yu XC, Wang XF, Zhang DP (2005) Abscisic acid activates acid invertases in developing grape berry. Physiol Plant 125:157–170

    Article  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riquelme PC, Leal DR, Carrillo KS, Moraga MU, Aguilar SV, Bolus SJ, Olate MS (2011) Endogenous quantification of abscisic acid and indole-3-acetic acid in somatic and zygotic embryos of Nothofagus alpina (Poepp. & Endl.) Oerst. Chil J Agric Res 71:4

    Google Scholar 

  • Roberts LM, Lord JM (1981) Protein biosynthetic capacity in the endosperm tissue of ripening castor bean seeds. Planta 152:420–427

    Article  CAS  PubMed  Google Scholar 

  • Ross ARS, Ambrose SJ, Cutler AJ, Feurtado JA, Kermode AR, Nelson K, Zhou R, Abrams SR (2004) Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high-performance liquid chromatography electrospray ionization tandem mass spectrometry with multiple reaction monitoring. Anal Biochem 329:324–333

    Article  CAS  PubMed  Google Scholar 

  • Setha S, Kondo S, Hirai N, Ohigashi H (2005) Quantification of ABA and its metabolites in sweet cherries using deuterium-labeled internal standards. Plant Growth Regul 45:183–188

    Article  CAS  Google Scholar 

  • Singh S, Sawhney VK (1998) Abscisic acid in a male sterile tomato mutant and its regulation by low temperature. J Exp Bot 319:199–203

    Article  Google Scholar 

  • Sorce C, Lombardi L, Giorgetti L, Parisi B, Ranalli P, Lorenzi R (2009) Indoleacetic acid concentration and metabolism changes during bud development in tubers of two potato (Solanum tuberosum) cultivars. J Plant Physiol 166:1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Spartz AK, Gray WM (2008) Plant hormone receptors: new perceptions. Genes Dev 22:2139–2148

    Article  CAS  PubMed  Google Scholar 

  • Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105

    Article  CAS  Google Scholar 

  • Vernieri P, Perata P, Lorenzi R, Ceccarelli N (1989) Abscisic acid levels during early seed development in Sechium edule Sw. Plant Physiol 91:1351–1355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vilaro F, Canela-Xandri A, Canela R (2006) Quantification of abscisic acid in grapevine leaf (Vitis vinifera) by isotope-dilution liquid chromatography–mass spectrometry. Anal Bioanal Chem 386:306–312

    Article  CAS  PubMed  Google Scholar 

  • Weiler EW, Jordan PS, Conrad W (1981) Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta 153:561–571

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Wang R, Liu A (2011) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass Bioenergy 35:1683–1692

    Article  CAS  Google Scholar 

  • Zhang FJ, Jin YJ, Xu XY, Lu RC, Chen HJ (2008) Study on the extraction, purification and quantification of jasmonic acid, abscisic acid and indole-3-acetic acid in Plants. Phytochem Anal 19:560–567

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li G, Yi G, Wang B, Deng A, Nan T, Li Z, Li Q (2006) Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal Chim Acta 571:79–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Tao Faqing, SW China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences for his timely assistance in conducting ELISA experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizhong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekaran, U., Liu, A. Endogenous abscisic acid signaling towards storage reserve filling in developing seed tissues of castor bean (Ricinus communis L.). Plant Growth Regul 72, 203–207 (2014). https://doi.org/10.1007/s10725-013-9846-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9846-z

Keywords

Navigation