Skip to main content
Log in

Abscisic acid metabolism and lipid accumulation of a cell suspension culture of Lesquerella fendleri

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Lesquerella fendleri (commonly known as “Fendler’s bladderpod” or “yellowtop”) is a member of the Brassicaceae and is an important seed oil-producing plant. The lipid profile of L. fendleri seed indicates potential for producing a high quality replacement for castor oil. In this work, characterization of the lipid content of a suspension cell culture, derived from seedlings of L.fendleri, is provided. Under the described suspension cell culture conditions, 16:0, 18:1Δ9, 18:2 Δ9, Δ12 and 18:3 Δ9, Δ12, Δ15 fatty acids were found to accumulate in the cells, while 16:0, 26:0 and 28:0 fatty acids were predominant in the culture medium. Subsequently, the effect of application of abscisic acid (ABA), which modulates lipid accumulation, was assessed. Exogenously applied ABA was taken up by the cells and metabolized via the conjugation pathway, resulting in the accumulation of ABA-glucose ester. Preliminary tests demonstrate the cell line is responsive to exogenous ABA, resulting in increased cellular lipid content and increased accumulation of lipids in the culture medium. This novel L. fendleri suspension culture presents a valuable model system for efficient characterization of mechanisms associated with ABA-induced accumulation of lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

ABA:

Abscisic acid

ABA-GE:

Abscisic acid glucose ester

DW:

Dry weight

FAMES:

Fatty acid methyl esters

MS:

Murashige and Skoog medium

PA:

Phaseic acid

TAG:

Triacylglycerol

References

  • Aly MAM, Amer EA, Al-Zayadneh WA, Eldin AEN (2008) Growth regulators influence the fatty acid profiles of in vitro induced jojoba somatic embryos. Plant Cell Tissue Organ Cult 93:107–114

    Article  CAS  Google Scholar 

  • Attree SM, Pomeroy MK, Fowke LC (1992) Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187:395–404

    Article  CAS  Google Scholar 

  • Balsevich JJ, Cutler AJ, Lamb N, Friesen LJ, Kurz EU, Perras MR, Abrams SR (1994) Response of cultured maize cells to (+)-abscisic acid, (−)-abscisic acid, and their metabolites. Plant Phys 106:135–142

    CAS  Google Scholar 

  • Balsevich J, Bishop G, Jacques SL, Hogge LR, Olson DJH, Laganiere N (1996) Preparation and analysis of some acetosugar esters of abscisic acid and derivatives. Can J Chem 74:238–245

    Article  CAS  Google Scholar 

  • Biesaga-Koscielniak J, Koscielniak J, Filek M, Janeczko A (2008) Rapid production of wheat cell suspension cultures directly from immature embryos. Plant Cell Tissue Organ Cult 94:139–147

    Article  Google Scholar 

  • Browse J, McCourt PJ, Somerville CR (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissues. Anal Biochem 152:141–145

    Article  PubMed  CAS  Google Scholar 

  • Carlson KD, Chaudhry A, Bagby MO (1990) Analysis of oil and meal from Lesquerella fendleri seed. J Am Oil Chem 67:438–442

    Article  CAS  Google Scholar 

  • Cui X-H, Murthy HN, Wu C-H, Paek K-Y (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypercum perforatum L. Plant Cell Tissue Organ Cult 103:7–14

    Article  CAS  Google Scholar 

  • Davoren JD, Nykiforuk CL, Laroche A, Weselake RJ (2002) Sucrose-induced changes in the transcriptome of cell suspension cultures of oilseed rape reveal genes associated with lipid biosynthesis. Plant Physiol Biochem 40:719–725

    Article  CAS  Google Scholar 

  • Dykinga J (1999) A storybook future for lesquerella? Ag Res Magazine 47:14–15

    Google Scholar 

  • Finkelstein R, Somerville C (1989) Abscisic acid or high osmoticum promote accumulation of long-chain fatty acids in developing embryos of Brassica napus. Plant Sci 67:213–217

    Article  Google Scholar 

  • Gamborg O, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gunstone FD (2001) Production and consumption of rapeseed oil on a global scale. Eur J Lipid Sci Technol 103:447–449

    Article  CAS  Google Scholar 

  • Hampson CR, Reaney MJT, Abrams GD, Abrams SR, Gusta LV (1992) Metabolism of (+)-abscisic acid to (+)-7′-hydroxyabscisic acid by bromegrass cell cultures. Phytochem 31:2645–2648

    Article  CAS  Google Scholar 

  • Holbrook LA, Rooijen GJH, Wilen RW, Moloney MM (1991) Oilbody proteins in microspore-derived embryos of Brassica napus. Plant Phys 97:1051–1058

    Article  CAS  Google Scholar 

  • Holbrook LA, Magus JR, Taylor DC (1992) Abscisic acid induction of elongase activity, biosynthesis and accumulation of very long chain monounsaturated fatty acids and oil body proteins in microspore-derived embryous of Brassica napus L. cv Reston. Plant Sci 84:99–115

    Article  CAS  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  PubMed  CAS  Google Scholar 

  • Jiang JJ, Zhao XX, Tian W, Li TB, Wang YP (2009) Intertribal somatic hyprids between Brassica napus and Camelina sativa with high linolenic acid content. Plant Cell Tissue Organ Cult 99:91–95

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for the rapid growth and bioassays with tobacco tissue cultures. Phys Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Perry HJ, Harwood JL (1993) Changes in the lipid content of developing seeds of Brassica napus. Phytochem 32:1411–1415

    Article  CAS  Google Scholar 

  • Priest DM, Jackson RG, Ashford DA, Abrams SR, Bowles DJ (2005) The use of abscisic acid analogues to analyse the substrate selectivity of UGT71B6, a UDP-glycosyltransferase of Arabidopsis thaliana. FEBS Lett 579:454–4458

    Article  Google Scholar 

  • Qi Q, Rose PA, Abrams GD, Taylor DC, Abrams SR, Cutler AJ (1998) (+)-Abscisic acid metabolism, 3-ketoacyl-coenzyme A synthase gene expression, and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Phys 117:979–987

    Article  CAS  Google Scholar 

  • Reed DW, Taylor DC, Covello PS (1997) Metabolism of hydroxy fatty acids in developing seeds in the genera Lesquerella (Brassicaceae) and Linum (Linaceae). Plant Phys 114:63–68

    CAS  Google Scholar 

  • Rodriguez-Sotres R, Black M (1994) Osmotic potential and abscisic acid regulate triacylglycerol synthesis in developing wheat embryos. Planta 192:9–15

    Google Scholar 

  • Rose PA, Cutler AJ, Irvine NM, Shaw AC, Squires TM, Loewen MK, Abrams SR (1997) 8′-Acetylene ABA: an irrerversible inhibitor of ABA 8′-hydroxylase. Bioorg Med Chem Lett 7:2543–2546

    Article  CAS  Google Scholar 

  • Scarth R, Tang J (2006) Modification of Brassica oil using conventional and transgenic approaches. Crop Sci 46:1225–1236

    Article  CAS  Google Scholar 

  • Sholi NJY, Chaurasia A, Agrawal A, Sarin NB (2009) ABA enhances plant regeneration of somatic embryos derived from cell suspension cultures of plantain cv. Spambia (Musa sp.). Plant Cell Tissue Organ Cult 99:133–140

    Article  CAS  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella Fendleri, an oilseed Brassicacea. Trans Res 12:115–222

    Article  CAS  Google Scholar 

  • Taylor DC, Weber N, Underhill EW, Pomeroy MK, Keller WA, Scowcroft WR, Wielen RW, Moloney MM, Holbrook LA (1990) Storage-protein regulation and lipid accumulation in microspore embryos of Brassica napus L. Planta 181:18–26

    Article  CAS  Google Scholar 

  • Taylor DC, Zhang Y, Kumar A, Francis T, Giblin EM, Barton DL, Ferrie JR, Laroche A, Shah S, Zhu W, Snyder CL, Hall L, Rakow G, Harwood JL, Weselake RJ (2009) Molecular modification of triacylglycerol accumulation under field conditions to produce canola with increased seed oil content. Botany 87:533–543

    Article  CAS  Google Scholar 

  • Vaughan GT, Milborrow BV (1984) The resolution by HPLC of RS-[2–14C]Me 1′, 4′-cis-diol of abscisic acid and the metabolism of (−)-R- and (+)-S-abscisic acid. J Exp Bot 35:110–120

    Article  CAS  Google Scholar 

  • Walker-Simmons MK, Rose PA, Shaw AC, Abrams RS (1994) The 7′-methyl group of abscisic acid is critical for biological activity in wheat embryo germination. Plant Phys 106:1279–1284

    CAS  Google Scholar 

  • Weber N, Taylor DC, Underhill EW (1992) Biosynthesis of storage lipids. In: Feichter A (ed) Plant cell and embryo cultures Adv Biochem Engineering/Biotech, vol 45. Springer-Verlag, Berlin, pp 99–131

    Google Scholar 

  • Weselake RJ (2000) Lipid biosynthesis in cultures of oilseed rape. In vitro Cell Dev Biol 36:338–348

    Article  CAS  Google Scholar 

  • Weselake RJ, Pomeroy KM, Furukawa TL, Goldwin JL, Little DB, Laroche A (1993) Developmental profile of diacylglycerol acyltransferase in maturing seeds of oilseed rape and safflower and microspore-derived cultures of oilseed rape. Plant Phys 102:565–571

    CAS  Google Scholar 

  • Weselake RJ, Byers SD, Davoren JM, Laroche A, Hodges DM, Pomeroy MK, Furukawa-Stoffer TL (1998) Triacylglycerol biosynthesis and gene expression in microspore-derived cell suspension cultures of oilseed rape. J Exp Bot 49:33–39

    Article  CAS  Google Scholar 

  • Wilen RW, Mandel RM, Pharis RP, Holbrook LA, Moloney MM (1990) Effects of abscisic acid and high osmoticum on storage protein gene expression in microspore embryos of Brassica napus. Plant Phys 94:875–881

    Article  CAS  Google Scholar 

  • Zaharia LI, Walker-Simmons MK, Rodriguez CN, Abrams SR (2005a) Chemistry of abscisic acid, abscisic acid catabolites and analogs. J Plant Growth Regul 24:274–284

    Article  CAS  Google Scholar 

  • Zaharia LI, Galka MM, Ambrose SJ, Abrams SR (2005b) Preparation of deuterated abscisic acid metabolites for use in mass spectrometry and feeding studies. J Labeled Comp Rad 48:435–445

    Article  CAS  Google Scholar 

  • Zhou R, Cutler AJ, Ambrose SJ, Galka MM, Nelson KM, Squires TM, Loewen MK, Jadhav AS, Ross ARS, Taylor DC, Abrams SR (2004) A new abscisic acid catabolic pathway. Plant Phys 134:361–369

    Article  CAS  Google Scholar 

  • Zou JAG, Barton DL, Taylor DC, Pomeroy MK, Abrams SR (1995) Induction of lipid and oleosin biosynthesis by (+)-Abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L. cv Reston. Plant Phys 108:563–571

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge critical reading of this manuscript by Drs. Mark Smith and Jitao Zou of the National Research Council of Canada Plant Biotechnology Institute. This work was funded by a National Research Council of Canada–Genomic Health Initiative grant to M.C.L and S.R.A. This manuscript represents NRCC # 50157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele C. Loewen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharenko, O.A., Irina Zaharia, L., Giblin, M. et al. Abscisic acid metabolism and lipid accumulation of a cell suspension culture of Lesquerella fendleri . Plant Cell Tiss Organ Cult 105, 415–422 (2011). https://doi.org/10.1007/s11240-010-9881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9881-7

Keywords

Navigation