Skip to main content
Log in

Isolation and characterization of the FVE gene of a Doritaenopsis hybrid involved in the regulation of flowering

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The FVE gene is considered a classical flowering time locus and affects flowering through the autonomous pathway. In this study, a FVE homologue gene was isolated from Doritaenopsis ‘Tinny Tender’ (Doritaenopsis Happy smile × Happy valentine) and designated as DhFVE. The full-length DhFVE cDNA was 1,856 bp with a 1,407 bp open reading frame and it encodes 468 amino acids. The putative DhFVE protein contained three conserved regions, one CAF1C_H4-bd region and two WD40 regions. Amino acid sequence alignment showed that DhFVE shares high similarity with FVE homologues from other species. Real-time quantitative reverse transcription polymerase chain reaction analysis showed that DhFVE is ubiquitously expressed in vegetative and reproductive organs. Its transcripts reached higher levels in the vegetative organs (roots, stems, and leaves) during the transition from vegetative to reproductive growth, whereas the stems showed the strongest expression. DhFVE was overexpressed in Arabidopsis and flowering of these transgenic plants were more delayed than in wild-type Arabidopsis by 2–3 days. The results indicate that DhFVE may play an important role in the regulation of flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RACE:

Rapid amplification of cDNA ends

ORF:

Open reading frame

RT-PCR:

Reverse transcription polymerase chain reaction

CaMV:

Cauliflower mosaic virus

FLC :

FLOWERING LOCUS C

SSH:

Suppression subtractive hybridization

PPF:

Photosynthetic photon flux

gDNA:

Genomic DNA

WT:

Wild-type

References

  • Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martinez-Zapater JM (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36:162–166

    Article  PubMed  CAS  Google Scholar 

  • Baek IS, Park HY, You MK, Lee JH, Kim JK (2008) Functional conservation and divergence of FVE genes that control flowering time and cold response in rice and Arabidopsis. Mol Cells 26:368–372

    PubMed  CAS  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  PubMed  CAS  Google Scholar 

  • Brehm A, Miska EA, Mccance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601

    Article  PubMed  CAS  Google Scholar 

  • Cha-um S, Ulziibat B, Kirdmanee C (2010) Effects of temperature and relative humidity during in vitro acclimatization, on physiological changes and growth characters of Phalaenopsis adapted to in vivo. Aust J Crop Sci 4(9):750–756

    CAS  Google Scholar 

  • Chen WH, Tseng YC, Liu YC, Chuo CM, Chen PT, Tseng KM, Yeh YC, Ger MJ, Wang HL (2008) Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite. Plant Cell Rep 27:1667–1675

    Article  PubMed  CAS  Google Scholar 

  • Christenson EA (2001) Phalaenopis: a monograph. Timber Press, Portland 330

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Cui YY, Pandey DM, Hahn EJ, Park KY (2004) Effect of drought on physiological aspects of crassulacean acid metabolism in Doritaenopsis. Plant Sci 167:1219–1226

    Article  CAS  Google Scholar 

  • He Y, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751–1754

    Article  PubMed  CAS  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 36(2):167–171

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Peeters AJ, Soppe W (1998) Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49:345–370

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Chen YJ, Markhart AH, Lin TY (2007) Temperature effects on systemic endoreduplication in orchid during floral development. Plant Sci 172:588–595

    Article  CAS  Google Scholar 

  • Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58(14):2085–2097

    Article  PubMed  CAS  Google Scholar 

  • Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16:731–740

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Zhang C, Sun X, Qin Q, Zhou M, Paek KY, Cui Y (2011) Isolation and characterization of a Doritaenopsis hybrid GIGANTEA gene, which possibly involved in inflorescence initiation at low temperatures. Kor J Hort Sci Technol 29(2):135–143

    CAS  Google Scholar 

  • Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745

    Article  PubMed  CAS  Google Scholar 

  • Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C (2002) Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14:877–888

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Zapater JM, Somerville CR (1990) Effect of light quality and vernalization on late-flowering mutant of Arabidopsis thaliana. Plant Physiol 92:770–776

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Zapater JM, Jarillo JA, Cruz-Alvarez M, Roldan M, Salinas J (1995) Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J 7(4):543–551

    Article  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    PubMed  CAS  Google Scholar 

  • Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13:935–941

    PubMed  CAS  Google Scholar 

  • Morel P, Trehin C, Breuil-Broyer S, Negrutiu I (2009) Altering FVE/MSI4 results in a substantial increase of biomass in Arabidopsis—the functional analysis of an ontogenesis accelerator. Mol Breeding 23:239–257

    Article  CAS  Google Scholar 

  • Mouradov A, Creme F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    PubMed  CAS  Google Scholar 

  • Qin Q, Kaas Q, Zhang C, Zhou L, Luo X, Zhou M, Sun X, Zhang L, Paek KY, Cui Y (2011) The cold awakening of Doritaenopsis ‘Tinny Tender’ orchid flowers: the role of leaves in cold-induced bud dormancy release. J Plant Growth Regul. doi:10.1007/s00344-011-9226-8

  • Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13:1427–1436

    PubMed  CAS  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). P Natl Acad Sci USA 97(6):3753–3758

    CAS  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time? Science 296:285–289

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Gendall AR, Dean C (1999) When to switch to flowering. Annu Rev Cell Dev Biol 15:519–550

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C (2003) FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777–787

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tsai CC, Chiang YC, Huang SC, Chen CH, Chou CH (2010) Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) on the basis of plastid and nuclear DNA. Plant Syst Evol 288:77–98

    Article  CAS  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Zhao HF, Ren GD, Yu XF, Cao SQ, Kuai BK (2005) Characterization of a novel developmentally retarded mutant (drm1) associated with the autonomous flowering pathway in Arabidopsis. Cell Res 15(2):133–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 30771762 and 31170658) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y3090532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyi Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Qin, Q., Zhang, J. et al. Isolation and characterization of the FVE gene of a Doritaenopsis hybrid involved in the regulation of flowering. Plant Growth Regul 68, 77–86 (2012). https://doi.org/10.1007/s10725-012-9695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9695-1

Keywords

Navigation