Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of Grid Computing
  3. Article
Serverless Workflows for Containerised Applications in the Cloud Continuum
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Guided container selection for data streaming through neural learning in cloud

23 May 2021

Kokila R. Vaishali, S. Radha Rammohan, … V. R. Niveditha

Privacy-preserving federated learning for scalable and high data quality computational-intelligence-as-a-service in Society 5.0

22 March 2022

Amirhossein Peyvandi, Babak Majidi, … Jagdish C. Patra

N2SkyC: User Friendly and Efficient Neural Network Simulation Fostering Cloud Containers

29 October 2019

Aliaksandr Adamenko, Andrii Fedorenko, … Erich Schikuta

Maintaining container sustainability through machine learning

22 July 2021

Mahendra Pratap Yadav, Rohit & Dharmendra Kumar Yadav

Big data analytics in Cloud computing: an overview

06 August 2022

Blend Berisha, Endrit Mëziu & Isak Shabani

An efficient task offloading and resource allocation using dynamic arithmetic optimized double deep Q-network in cloud edge platform

24 February 2023

K. Kumaran & E. Sasikala

$$FC^{2}$$ F C 2 : cloud-based cluster provisioning for distributed machine learning

08 February 2019

Ta Nguyen Binh Duong

MiCADO-Edge: Towards an Application-level Orchestrator for the Cloud-to-Edge Computing Continuum

02 November 2021

Amjad Ullah, Huseyin Dagdeviren, … James Bowden

Deep learning approach to security enforcement in cloud workflow orchestration

18 January 2023

Hadeel T. El-Kassabi, Mohamed Adel Serhani, … Khaled Khalil

Download PDF

Associated Content

Part of a collection:

Orchestration of Computing Resources in the Cloud-to-Things Continuum

  • Open Access
  • Published: 13 July 2021

Serverless Workflows for Containerised Applications in the Cloud Continuum

  • Sebastián Risco  ORCID: orcid.org/0000-0002-7710-21821,
  • Germán Moltó1,
  • Diana M. Naranjo1 &
  • …
  • Ignacio Blanquer1 

Journal of Grid Computing volume 19, Article number: 30 (2021) Cite this article

  • 1181 Accesses

  • 17 Citations

  • 7 Altmetric

  • Metrics details

This article has been updated

Abstract

This paper introduces an open-source platform to support serverless computing for scientific data-processing workflow-based applications across the Cloud continuum (i.e. simultaneously involving both on-premises and public Cloud platforms to process data captured at the edge). This is achieved via dynamic resource provisioning for FaaS platforms compatible with scale-to-zero approaches that minimise resource usage and cost for dynamic workloads with different elasticity requirements. The platform combines the usage of dynamically deployed auto-scaled Kubernetes clusters on on-premises Clouds and automated Cloud bursting into AWS Lambda to achieve higher levels of elasticity. A use case in public health for smart cities is used to assess the platform, in charge of detecting people not wearing face masks from captured videos. Faces are blurred for enhanced anonymity in the on-premises Cloud and detection via Deep Learning models is performed in AWS Lambda for this data-driven containerised workflow. The results indicate that hybrid workflows across the Cloud continuum can efficiently perform local data processing for enhanced regulations compliance and perform Cloud bursting for increased levels of elasticity.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

Change history

  • 19 October 2021

    Springer Nature’s version of this paper was updated to add the funding information: Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

References

  1. Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Piwonka, P., Popa, D.M.: Firecracker: lightweight virtualization for serverless applications. In: 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), pp. 419–434. USENIX Association, Santa Clara, CA. https://www.usenix.org/conference/nsdi20/presentation/agache (2020)

  2. Al Nuaimi, E., Al Neyadi, H., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart cities. Journal of Internet Services and Applications 6(1), 25 (2015). https://doi.org/10.1186/s13174-015-0041-5.

    Article  Google Scholar 

  3. de Alfonso, C., Caballer, M., Calatrava, A., Moltó, G., Blanquer, I.: Multi-elastic Datacenters: auto-scaled virtual clusters on energy-aware physical infrastructures. Journal of Grid Computing 17(1), 191–204 (2019). https://doi.org/10.1007/s10723-018-9449-z.

    Article  Google Scholar 

  4. Amazon Web Services: Amazon EC2. https://aws.amazon.com/ec2/

  5. Amazon Web Services: AWS Batch — Easy and Efficient Batch Computing Capabilities. https://aws.amazon.com/batch/

  6. Amazon Web Services: AWS Lambda. https://aws.amazon.com/lambda

  7. Apache: OpenWhisk - Open Source Serverless Cloud Platform. https://openwhisk.apache.org/

  8. Argo: Workflows & Pipelines. https://argoproj.github.io/projects/argo/

  9. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R., Slominski, A., Suter, P.: Serverless computing: Current trends and open problems. In: Research Advances in Cloud Computing., pp 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5026-8_1

  10. Baldini, I., Cheng, P., Fink, S.J., Mitchell, N., Muthusamy, V., Rabbah, R., Suter, P., Tardieu, O.: The serverless trilemma: function composition for serverless computing. In: Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software - Onward! 2017, pp 89–103. ACM Press, New York (2017). https://doi.org/10.1145/3133850.3133855. http://dl.acm.org/citation.cfm?doid=3133850.3133855

  11. Balouek-Thomert, D., Renart, E.G., Zamani, A.R., Simonet, A., Parashar, M.: Towards a computing continuum: Enabling edge-to-cloud integration for data-driven workflows. International Journal of High Performance Computing Applications 33(6), 1159–1174 (2019). https://doi.org/10.1177/1094342019877383.

    Article  Google Scholar 

  12. Baresi, L., Mendonça, D.F., Garriga, M., Guinea, S., Quattrocchi, G.: A unified model for the mobile-edge-cloud continuum. ACM Transactions on Internet Technology 19(2), 1–21 (2019). https://doi.org/10.1145/3226644

    Article  Google Scholar 

  13. Beckman, P., Dongarra, J., Ferrier, N., Fox, G., Moore, T., Reed, D., Beck, M.: Harnessing the computing continuum for programming our world. In: Fog Computing., pp 215–230. Wiley (2020). https://doi.org/10.1002/9781119551713.ch7

  14. Bello, J.P., Mydlarz, C., Salamon, J.: Sound analysis in smart cities. In: Computational Analysis of Sound Scenes and Events, pp 373–397. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-63450-0_13

  15. Brewer, E.A.: Kubernetes and the path to cloud native. In: Proceedings of the Sixth ACM Symposium on Cloud Computing - SoCC ’15, pp 167–167. Association for Computing Machinery (ACM), New York (2015). https://doi.org/10.1145/2806777.2809955. http://dl.acm.org/citation.cfm?doid=2806777.2809955

  16. Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. Journal of Grid Computing 13(1), 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5

    Article  Google Scholar 

  17. Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Future Generation Computer Systems 61, 13–25 (2016). https://doi.org/10.1016/j.future.2016.01.018

    Article  Google Scholar 

  18. Camero, A., Alba, E.: Smart City and information technology: A review. Cities 93, 84–94 (2019). https://doi.org/10.1016/j.cities.2019.04.014

    Article  Google Scholar 

  19. Casalboni, A.: AWS Lambda Power Tuning. https://github.com/alexcasalboni/aws-lambda-power-tuning

  20. Chard, R., Babuji, Y., Li, Z., Skluzacek, T., Woodard, A., Blaiszik, B., Foster, I., Chard, K.: funcX: a federated function serving fabric for science. In: Proceedings of the 29th International symposium on high-performance parallel and distributed computing, pp 65–76. ACM, New York (2020). https://doi.org/10.1145/3369583.3392683

  21. Chen, C.H., Favre, J., Kurillo, G., Andriacchi, T.P., Bajcsy, R., Chellappa, R.: Camera networks for healthcare, teleimmersion, and surveillance. Computer 47(5), 26–36 (2014). https://doi.org/10.1109/MC.2014.112. http://ieeexplore.ieee.org/document/6818909/

    Article  Google Scholar 

  22. Chen, Q., Wang, W., Wu, F., De, S., Wang, R., Zhang, B., Huang, X.: A survey on an emerging area: deep learning for smart city data. IEEE Trans. Emerg. Topics Comput. Intell. 3(5), 392–410 (2019). https://doi.org/10.1109/TETCI.2019.2907718. https://ieeexplore.ieee.org/document/8704334/

    Article  Google Scholar 

  23. Christidis, A., Davies, R., Moschoyiannis, S.: Serving machine learning workloads in resource constrained environments: A serverless deployment example. In: Proceedings - 2019 IEEE 12th Conference on Service-Oriented Computing and Applications, SOCA 2019, pp. 55–63. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/SOCA.2019.00016 (2019)

  24. Christidis, A., Moschoyiannis, S., Hsu, C. H., Davies, R.: Enabling Serverless Deployment of Large-Scale AI Workloads. IEEE Access 8, 70150–70161 (2020). https://doi.org/10.1109/ACCESS.2020.2985282

    Article  Google Scholar 

  25. CNCF: Serverless Workflow: A specification for defining declarative workflow models that orchestrate Event-driven, Serverless applications. https://serverlessworkflow.io

  26. Couturier, R.: Designing scientific applications on GPUs. Chapman and Hall/CRC. https://doi.org/10.1201/b16051. https://www.taylorfrancis.com/books/designing-scientific-applications-gpus-raphael-couturier/e/10.1201/b16051 (2013)

  27. Docker: Enterprise Container Platform. https://www.docker.com/

  28. Docker: Docker hub. https://hub.docker.com/ (2019)

  29. Dutka, Ł., Wrzeszcz, M., Lichoń, T., Słota, R., Zemek, K., Trzepla, K., Opioła, Ł., Słota, R., Kitowski, J.: Onedata - A step forward towards globalization of data access for computing infrastructures, vol. 51, pp 2843–2847 (2015). https://doi.org/10.1016/j.procs.2015.05.445. https://www.sciencedirect.com/science/article/pii/S1877050915012533

  30. Fouladi, S., Romero, F., Iter, D., Li, Q., Chatterjee, S., Kozyrakis, C., Zaharia, M., Winstein, K.: From laptop to Lambda: Outsourcing everyday jobs to thousands of transient functional containers. In: Proceedings of the 2019 USENIX Annual Technical Conference, USENIX ATC 2019, pp 475–488 (2019). https://dl.acm.org/doi/10.5555/3358807.3358848

  31. Giménez-Alventosa, V., Moltó, G., Caballer, M.: A framework and a performance assessment for serverless MapReduce on AWS Lambda. Future Generation Computer Systems 97, 259–274 (2019). https://doi.org/10.1016/j.future.2019.02.057

    Article  Google Scholar 

  32. Gimėnez-Alventosa, V., Moltȯ, G., Segrelles, J. D.: RUPER-LB: Load balancing embarrasingly parallel applications in unpredictable cloud environments. In: International Symposium on Cloud Computing and Services for High Performance Computing Systems (as part of the 18th International Conference on High Performance Computing & Simulation (HPCS 2020) (2020)

  33. GRyCAP: minicon: minimization containers. https://github.com/grycap/minicon

  34. Heath, M.T.: Scientific computing: : an introductory survey, revised second edition. Society for Industrial and Applied Mathematics, Philadelphia, PA. https://doi.org/10.1137/1.9781611975581. (2018)

  35. Ishakian, V., Muthusamy, V., Slominski, A.: Serving deep learning models in a serverless platform. In: Proceedings - 2018 IEEE International Conference on Cloud Engineering, IC2E 2018, pp. 257–262. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IC2E.2018.00052 (2018)

  36. Ivie, P., Thain, D.: Reproducibility in scientific computing. https://doi.org/10.1145/3186266 (2018)

  37. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: Occupy the cloud. In: Proceedings of the 2017 Symposium on Cloud Computing, pp 445–451. ACM, New York (2017). https://doi.org/10.1145/3127479.3128601. arXiv:1702.04024

  38. Knative: Kubernetes-based platform to deploy and manage modern serverless workloads. https://knative.dev/

  39. Linux Containers: LXC. https://linuxcontainers.org/lxc/introduction/

  40. Malawski, M., Gajek, A., Zima, A., Balis, B., Figiela, K.: Serverless execution of scientific workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud functions. Future Generation Computer Systems 110, 502–514 (2020). https://doi.org/10.1016/j.future.2017.10.029. https://linkinghub.elsevier.com/retrieve/pii/167739X1730047X

    Article  Google Scholar 

  41. McCallister, E., Grance, T., Kent, K.: Guide to protecting the confidentiality of personally identifiable information (PII). Special Publication 800-122 Guide pp. 1–59. https://doi.org/10.5555/2206206 (2010)

  42. Microsoft Azure: Azure Functions—Develop Faster With Serverless Compute. https://azure.microsoft.com/en-us/services/functions/

  43. MinIO: High Performance, Kubernetes Native Object Storage. https://min.io/

  44. Mirkhan, A.: BlurryFaces: A tool to blur faces or other regions in photos and videos. https://github.com/asmaamirkhan/BlurryFaces

  45. Morris, K.: Infrastructure as code: managing servers in the cloud. O’Reilly Media, Inc. https://www.oreilly.com/library/view/infrastructure-as-code/9781491924334/ (2016)

  46. OASIS: TOSCA simple profile in YAML version 1.3. https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

  47. OpenFaaS: Serverless functions made simple. https://www.openfaas.com/

  48. OpenStack: Open Source Cloud Computing Infrastructure. https://www.openstack.org

  49. Pavlovic, M., Etsion, Y., Ramirez, A.: On the memory system requirements of future scientific applications: Four case-studies. In: Proceedings - 2011 IEEE International Symposium on Workload Characterization, IISWC - 2011, pp 159–170 (2011). https://doi.org/10.1109/IISWC.2011.6114176

  50. Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures. Future Generation Computer Systems 83, 50–59 (2018). https://doi.org/10.1016/j.future.2018.01.022. http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485

    Article  Google Scholar 

  51. Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures. Future Generation Computer Systems 83, 50–59 (2018). https://doi.org/10.1016/j.future.2018.01.022. http://www.sciencedirect.com/science/article/pii/S0167739X17316485

    Article  Google Scholar 

  52. Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: A programming model and middleware for high throughput serverless computing applications. In: Proceedings of the 34th ACM/SIGAPP symposium on applied Computing - SAC ’19, pp 106–113. ACM Press, New York (2019). https://doi.org/10.1145/3297280.3297292

  53. Perez, A., Risco, S., Naranjo, D.M., Caballer, M., Molto, G.: On-premises serverless computing for event-driven data processing applications. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 414–421. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/cloud.2019.00073. https://ieeexplore.ieee.org/document/8814513 (2019)

  54. Purohit, A.: face-mask-detector: Real-Time Face mask detection using deep learning with Alert system. https://github.com/adityap27/face-mask-detector/

  55. Reisslein, M., Rinner, B., Roy-Chowdhury, A.: Smart Camera Networks [Guest editors’ introduction]. Computer 47(5), 23–25 (2014). https://doi.org/10.1109/MC.2014.134

    Article  Google Scholar 

  56. Risco, S., Moltó, G.: GPU-enabled serverless workflows for efficient multimedia processing. Applied Sciences 11(4), 1438 (2021). https://doi.org/10.3390/app11041438. https://www.mdpi.com/2076-3417/11/4/1438

    Article  Google Scholar 

  57. Ristov, S., Pedratscher, S., Fahringer, T.: AFCL: An abstract function choreography language for serverless workflow specification. Future Generation Computer Systems 114, 368–382 (2021). https://doi.org/10.1016/j.future.2020.08.012. https://linkinghub.elsevier.com/retrieve/pii/S0167739X20302648

    Article  Google Scholar 

  58. Sengupta, S.: faas-flow: Function Composition for OpenFaaS. https://github.com/s8sg/faas-flow

  59. Sewak, M., Singh, S.: Winning in the era of serverless computing and function as a service. In: 2018 3rd International Conference for Convergence in Technology, I2CT 2018. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/I2CT.2018.8529465 (2018)

  60. Shields, M.: Control-versus data-driven workflows. In: Workflows for e-Science, pp 167–173. Springer , London (2007). https://link.springer.com/chapter/10.1007/978-1-84628-757-2_11

  61. Spadini, T., Silva, D.L.d.O., Suyama, R.: Sound event recognition in a smart city surveillance context. arXiv:1910.12369 (2019)

  62. Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: A view of scientific applications. In: I-SPAN 2009 - The 10th International Symposium on Pervasive Systems, Algorithms, and Networks, pp 4–16 (2009). https://doi.org/10.1109/I-SPAN.2009.150

Download references

Acknowledgements

The authors would like to thank the European Union for the project “Artificial Intelligence in Secure PRIvacy-preserving computing coNTinuum” (AI-SPRINT), with code 101016577, funded under the H2020 Framework Programme and also the regional government of the Comunitat Valenciana (Spain) for the project IDIFEDER/2018/032 (High-Performance Algorithms for the Modeling, Simulation and early Detection of diseases in Personalized Medicine), co-funded by the European Union ERDF funds (European Regional Development Fund) of the Comunitat Valenciana 2014–2020.

Funding

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Author information

Authors and Affiliations

  1. Instituto de Instrumentación para Imagen Molecular (I3M), Centro mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, España

    Sebastián Risco, Germán Moltó, Diana M. Naranjo & Ignacio Blanquer

Authors
  1. Sebastián Risco
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Germán Moltó
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Diana M. Naranjo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Ignacio Blanquer
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Sebastián Risco.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Risco, S., Moltó, G., Naranjo, D.M. et al. Serverless Workflows for Containerised Applications in the Cloud Continuum. J Grid Computing 19, 30 (2021). https://doi.org/10.1007/s10723-021-09570-2

Download citation

  • Received: 29 October 2020

  • Accepted: 21 June 2021

  • Published: 13 July 2021

  • DOI: https://doi.org/10.1007/s10723-021-09570-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cloud computing
  • Serverless computing
  • Workflow
  • Containers
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Orchestration of Computing Resources in the Cloud-to-Things Continuum

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.