Skip to main content
Log in

The future range of two Thymus daenensis subspecies in Iran under climate change scenarios: MaxEnt model-based prediction

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The geographical distribution of species has been significantly affected by human activities, which has led to changes in the ranges of many species in terms of latitude and altitude. To assess the effects of climate change on the distribution of species and determine the suitability of their habitats, species distribution models (SDMs) have been developed. This study aimed to use the MaxEnt model to develop SDMs for Thymus daenensis subs. daenensis and Thymus daenensis subs. lancifolius in Iran under two representative concentration pathways (RCP 4.5 and RCP 8.5) for the years 2050 and 2070. The objective was to identify the crucial bioclimatic (n = 6) and topographic (n = 1) variables that affect their distribution and predict how their distribution may change under different climate scenarios. The results showed that the most significant factors influencing the distribution of the two taxa were the slope and mean temperature of the driest quarter (bio9). The MaxEnt modeling was effective, as indicated by all Area under the Curve values being over 0.9. Based on the projections, the two subspecies are expected to experience a decrease in area in the coming years. These results can be useful in developing adaptive management strategies to protect and sustainably utilize these species in the face of global climate change. Special attention should be given to conserving T. d. subsp daenensis and T. d. subsp lancifolius considering their significant habitat loss in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data generated/ analyzed during the study are available with the corresponding author on reasonable request.

References

  • Abdelaal M, Fois M, Fenu G, Bacchetta G (2019) Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Eco Inform 50:68–75

    Article  Google Scholar 

  • Abdi E, Saleh HR, Majnonian B, Deljouei A (2019) Soil fixation and erosion control by Haloxylon persicum roots in arid lands, Iran. J Arid Land 11:86–96

    Article  Google Scholar 

  • Abolmaali SM-R, Tarkesh M, Bashari H (2018) MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Eco Inform 43:116–123

    Article  Google Scholar 

  • Ahmadi K, Alavi SJ, Amiri GZ, Hosseini SM, Serra-Diaz JM, Svenning JC (2020) The potential impact of future climate on the distribution of European yew (Taxus baccata L.) in the Hyrcanian Forest region (Iran). Int J Biometeorol 64(9):1451–1462. https://doi.org/10.1007/s00484-020-01922-z

    Article  PubMed  Google Scholar 

  • Ahmadi M, Hemami M, Kaboli M, Shabani F (2023) MaxEnt brings comparable results when the input data are being completed; model parameterization of four species distribution models. Ecol Evol 13(2):e9827

    Article  PubMed  PubMed Central  Google Scholar 

  • Aminzadeh M, Amiri F, Abadi EA, Mahdevi K, Fadai S (2010) Factors affecting on essential chemical composition of Thymus kotschyanus in Iran. World Appl Sci J 8(7):847–856

    CAS  Google Scholar 

  • Arvin AA, Khodagholi M, Moazeni S (2020) Investigation of the bio-climatic needs of Thymus daenensis Celak: The case of Isfahan Province. J Range Watershed Manag 73(2):257–272

    Google Scholar 

  • Asgarian A, Soffianian A (2023) Past and potential future distribution of white mangroves in an arid estuarine environment: Integration of Maxent and CA-Markov models. Mar Policy 147:105345. https://doi.org/10.1016/j.marpol.2022.105345

    Article  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Elsevier, Netherlands

    Google Scholar 

  • Bazrmanesh A, Tarkesh M, Bashari H, Poormanafi S (2019) Effect of climate change on the ecological niches of the climate of Bromus tomentellus Boiss using Maxent in Isfahan province. J Range Watershed Manag 71(4):857–867

    Google Scholar 

  • Behmanesh B, Tabasi E, Fakhireh A, Khalasi Ahvazi L (2019) Modeling the distribution of medicinal plant species of Thymus kotschyanus and Achillea millefolium using ENFA and logistic regression. J Plant Ecosyst Conserv 6(13):91–120

    Google Scholar 

  • Bender IMA, Kissling WD, Böhning-Gaese K, Hensen I, Kühn I, Nowak L, Töpfer T, Wiegand T, Dehling DM, Schleuning M (2019) Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Sci Rep 9(1):17708

    Article  PubMed  PubMed Central  Google Scholar 

  • Beridze B, Sękiewicz K, Walas Ł, Thomas PA, Danelia I, Fazaliyev V, Kvartskhava G, Sós J, Dering M (2023) Biodiversity protection against anthropogenic climate change: conservation prioritization of Castanea sativa in the south Caucasus based on genetic and ecological metrics. Ecol Evol 13(5):e10068

    Article  PubMed  PubMed Central  Google Scholar 

  • Boira H, Blanquer A (1998) Environmental factors affecting chemical variability of essential oils in Thymus piperella L. Biochem Syst Ecol 26(8):811–822

    Article  CAS  Google Scholar 

  • Bonn A, Rodrigues ASL, Gaston KJ (2002) Threatened and endemic species: are they good indicators of patterns of biodiversity on a national scale? Ecol Lett 5(6):733–741

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Corticchiato M, Tomi F, Bernardini AF, Casanova J (1998) Composition and infraspecific variability of essential oil from Thymus herba barona Lois. Biochem Syst Ecol 26(8):915–932

    Article  CAS  Google Scholar 

  • Darvishi L, Zare Chahouki MA, Jafari M, Azarnivand H, Yousefi Valikchali M (2013) Study on the environmental factors contributing to distribution of Thymus kotschyanus in Taleghan Basin, Iran. J Rangel Sci 4(1):82–90

    Google Scholar 

  • De Frenne P, Lenoir J, Luoto M, Scheffers BR, Zellweger F, Aalto J, Ashcroft MB, Christiansen DM, Decocq G, De Pauw K (2021) Forest microclimates and climate change: importance, drivers and future research agenda. Glob Change Biol 27(11):2279–2297

    Article  Google Scholar 

  • Deljouei A, Cislaghi A, Abdi E, Borz SA, Majnounian B, Hales TC (2023) Implications of hornbeam and beech root systems on slope stability: from field and laboratory measurements to modelling methods. Plant Soil 483(1–2):547–572

    Article  CAS  Google Scholar 

  • Doulabian S, Golian S, Toosi AS, Murphy C (2021) Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. J Water Clim Change 12(1):166–184

    Article  Google Scholar 

  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2(8):619–622

    Article  Google Scholar 

  • Elahian F, Yazdinezhad A, Moein-Albokay Tusi N, Nouri Z, Mirzaei SA (2020) Variety of antibacterial and antifungal activity of Thymus kotschyanus essential oil collected from fourteen regions of Iran. J Birjand Univ Med Sci 27(3):275–290

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Jacob McC M, Overton AT, Peterson SJ, Phillips KR, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57

    Article  Google Scholar 

  • Fois M, Cuena-Lombraña A, Fenu G, Bacchetta G (2018a) Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecol Model 385:124–132

    Article  Google Scholar 

  • Fois M, Cuena-Lombraña A, Fenu G, Cogoni D, Bacchetta G (2018b) Does a correlation exist between environmental suitability models and plant population parameters? An experimental approach to measure the influence of disturbances and environmental changes. Ecol Ind 86:1–8

    Article  Google Scholar 

  • Ghasemi Pirbalouti A, Emami Bistghani Z, Malekpoor F (2015) An overview on genus Thymus. J Med Herbs 6(2):93–100

    Google Scholar 

  • Hama AA, Khwarahm NR (2023) Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: range overlap and implications for conservation. Eco Inform 73:101930

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) Package ‘dismo.’ Circles 9(1):1–68

    Google Scholar 

  • Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83(7):2027–2036

    Article  Google Scholar 

  • Hosseini N, Mehrabian A, Mostafavi H (2021) The Distribution patterns and priorities for conservation of monocots crop wild relatives (CWRs) of Iran. J Wildl Biodiv 5(2):28–43

    Google Scholar 

  • Hosseini N, Mehrabian A, Mostafavi H (2022) Modeling climate change effects on spatial distribution of wild Aegilops L. (Poaceae) toward food security management and biodiversity conservation in Iran. Integr Environ Assess Manag 18(3):697–708

    Article  PubMed  Google Scholar 

  • Jalas, J (1982) Thymus in KH Rechinger. Fl. Iran. vol 150, pp 532–551. Graz

  • Jamshidi Z, Samani N (2022) Mapping the spatiotemporal diversity of precipitation in Iran using multiple statistical methods. Theoret Appl Climatol 150(1–2):893–907

    Article  Google Scholar 

  • Jamzad Z (2012) Flora of Iran(lamiaceae). Research Institute of Forests and Rangelands. Vol 76)

  • Kafash A, Ashrafi S, Ohler A, Yousefi M, Malakoutikhah S, Koehler G, Schmidt BR (2018) Climate change produces winners and losers: differential responses of amphibians in mountain forests of the Near East. Glob Ecol Conserv 16:e00471

    Google Scholar 

  • Khajoei Nasab F, Mehrabian A, Mostafavi H, Neemati A (2022) The influence of climate change on the suitable habitats of Allium species endemic to Iran. Environ Monit Assess 194(3):169. https://doi.org/10.1007/s10661-022-09793-0

    Article  PubMed  Google Scholar 

  • Khan AM, Li Q, Saqib Z, Khan N, Habib T, Khalid N, Majeed M, Tariq A (2022) MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests 13(5):715

    Article  Google Scholar 

  • Khanum R, Mumtaz AS, Kumar S (2013) Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol 49:23–31

    Article  Google Scholar 

  • Khoshakh F, Gh A (2011) Simulation of temperature changes in Iran under the atmosphere carbon dioxide duplication condition. Iran J Environ Health Sci Eng 8(2):139–152

    Google Scholar 

  • Khwarahm NR (2020) Mapping current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan region, Iraq. Ecol Process 9(1):1–16

    Article  Google Scholar 

  • Kong F, Tang L, He H, Yang F, Tao J, Wang W (2021) Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. Environ Sci Pollut Res 28(26):34655–34663. https://doi.org/10.1007/s11356-021-13121-3

    Article  Google Scholar 

  • Koutecká E, Lepš J (2009) Effect of light and moisture conditions and seed age on germination of three closely related Myosotis species. Folia Geobot 44(2):109–130. https://doi.org/10.1007/s12224-009-9038-9

    Article  Google Scholar 

  • Larti M, Ghasempour S, Sharifi Ashorabadi E, Alizadeh B (2013) The study of some ecological characteristics of Thymus kotschyanus Boiss. et Hohen and Thymus pubescens Boiss. & Kotschy ex Celak in West Azarbaijan. Iran J Med Aromat Plants Res 29(2):412–424

    Google Scholar 

  • Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40(4):778–789. https://doi.org/10.1111/jbi.12058

    Article  Google Scholar 

  • Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of California’s endemic flora. PLoS ONE 3(6):e2502

    Article  PubMed  PubMed Central  Google Scholar 

  • Maharjan M, Aryal A, Talchabhadel R, Thapa BR (2021) Impact of climate change on the streamflow modulated by changes in precipitation and temperature in the north latitude watershed of Nepal. Hydrology 8(3):117

    Article  Google Scholar 

  • Majd M, Khoshhal Dastjerdi J, Sefidkon F, Lebasschi M, Baratian A (2021) Determination of the effects of climate on growth and phonological stage of Daenensis Thymuse for cultivation in different geographical regions. Phys Geogr Res Q 53(2):195–211

    Google Scholar 

  • Makki T, Mostafavi H, Matkan AA, Valavi R, Hughes RM, Shadloo S, Aghighi H, Abdoli A, Teimori A, Eagderi S (2023) Predicting climate heating impacts on riverine fish species diversity in a biodiversity hotspot region. Sci Rep 13(1):14347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manukyan A (2019) Secondary metabolites and their antioxidant capacity of Caucasian endemic thyme (Thymus transcaucasicus Ronn as affected by environmental stress. J Appl Res Med Aromat Plants 13:100209. https://doi.org/10.1016/j.jarmap.2019.100209

    Article  Google Scholar 

  • Mehrabian A (2015) Distribution patterns and diversity of Onosma in Iran: with emphasis on endemism conservation and distribution pattern in SW Asia. Rostaniha 16(1):36–60

    Google Scholar 

  • Mehrabian A, Nasab FK, Fraser-Jenkins CR, Tajik F (2020) Distribution patterns and priorities for conservation of Iranian pteridophytes. Fern Gazette 21(4):141–160

    Google Scholar 

  • Mirinejad S, Jahantab E, Mahmoudi MR, Navaei MN, Rahimi MM, Sharafatmandrad M (2018) Investigating the impact of some habitat characteristics on distribution of Stachys pilifera benth using the BMLR model in Iran. Pol J Environ Stud 27(5):2171–2178. https://doi.org/10.15244/pjoes/79719

    Article  Google Scholar 

  • Mohammady M, Pourghasemi HR, Yousefi S, Dastres E, Edalat M, Pouyan S, Eskandari S (2021) Modeling and prediction of habitat suitability for Ferula gummosa medicinal plant in a mountainous area. Nat Resour Res 30(6):4861–4884. https://doi.org/10.1007/s11053-021-09940-3

    Article  Google Scholar 

  • Momeni Damaneh J, Ahmadi J, Rahmanian S, Sadeghi SMM, Nasiri V, Borz SA (2022) Prediction of wild pistachio ecological niche using machine learning models. Eco Inform 72:101907

    Article  Google Scholar 

  • Muluneh MG (2021) Impact of climate change on biodiversity and food security: a global perspective—a review article. Agric Food Secur 10(1):1–25. https://doi.org/10.1186/s40066-021-00318-5

    Article  Google Scholar 

  • Muñoz AR, Márquez AL, Real R (2013) Updating known distribution models for forecasting climate change impact on endangered species. PLoS ONE 8(6):e65462. https://doi.org/10.1371/journal.pone.0065462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muths E, Chambert T, Schmidt BR, Miller DAW, Hossack BR, Joly P, Grolet O, Green DM, Pilliod DS, Cheylan M (2017) Heterogeneous responses of temperate-zone amphibian populations to climate change complicates conservation planning. Sci Rep 7(1):17102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naghipour Borj AA, Ostovar Z, Asadi E (2019) The influence of climate change on distribution of an endangered medicinal plant (Fritillaria Imperialis L.) in central Zagros. J Rangel Sci 9(2):159–171

    Google Scholar 

  • Naudiyal N, Wang J, Ning W, Gaire NP, Peili S, Yanqiang W, Jiali H, Ning S (2021) Potential distribution of Abies, Picea, and Juniperus species in the sub-alpine forest of Minjiang headwater region under current and future climate scenarios and its implications on ecosystem services supply. Ecol Indic 121:107131. https://doi.org/10.1016/j.ecolind.2020.107131

    Article  Google Scholar 

  • Nazari S, Jafarian Z, Alavi J, Naghi poor, A. A. (2021) The Impact of climate change on the geographic distribution of Thymus Kotschyanus (Boiss and Hohen) using ensemble modelling. Desert Manag 9(3):1–16. https://doi.org/10.22034/JDMAL.2021.526831.1338

    Article  Google Scholar 

  • Noroozi J, Talebi A, Doostmohammadi M, Rumpf SB, Linder HP, Schneeweiss GM (2018) Hotspots within a global biodiversity hotspot-areas of endemism are associated with high mountain ranges. Sci Rep 8(1):10345

    Article  PubMed  PubMed Central  Google Scholar 

  • Oke OA, Thompson KA (2015) Distribution models for mountain plant species: the value of elevation. Ecol Model 301:72–77

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34(1):102–117

    Article  Google Scholar 

  • Phartyal SS, Thapliyal RC, Nayal JS, Joshi G (2003) Seed storage physiology of Himalayan elm (Ulmus wallichiana): an endangered tree species of tropical highlands. Seed Science and Technology 31(3):651–658

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19(1):181–197. https://doi.org/10.1890/07-2153.1

    Article  PubMed  Google Scholar 

  • Pirbalouti AG, Karimi A, Yousefi M, Enteshari S, Golparvar AR (2011) Diversity of Thymus daenensis Celak in central and west of Iran. J Med Plants Res 5(4):319–323

    Google Scholar 

  • Qin A, Liu B, Guo Q, Bussmann RW, Ma F, Jian Z, Xu G, Pei S (2017) Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob Ecol Conserv 10:139–146. https://doi.org/10.1016/j.gecco.2017.02.004

    Article  Google Scholar 

  • Team RC (2018) R: a language and environment for statistical Computing. Vienna, Austria. https://www.r-project.org/

  • Rahman W, Magos Brehm J, Maxted N (2023) The impact of climate change on the future distribution of priority crop wild relatives in Indonesia and implications for conservation planning. J Nat Conserv 73:126368. https://doi.org/10.1016/j.jnc.2023.126368

    Article  Google Scholar 

  • Sayadi S, Mehrabian A (2016) Diversity and distribution patterns of Solanaceae in Iran: Implications for conservation and habitat management with emphasis on endemism and diversity in SW Asia. Rostaniha 17(2):136–160

    Google Scholar 

  • Sayadi S, Mehrabian A, Mostafavi H (2022) Diversity centers and distribution patterns of Eudicot crop wild relatives of Iran: priorities for conservation and important plant areas. J Wildl Biodiv 6(1):1–19. https://doi.org/10.22120/jwb.2021.526979.1219

    Article  Google Scholar 

  • Shao Y, Fan G, Feng Z et al (2023) Prediction of forest fire occurrence in China under climate change scenarios. J for Res 34:1217–1228. https://doi.org/10.1007/s11676-023-01605-6

    Article  Google Scholar 

  • Sharifi Ashoorabadi E, Mackizadeh Tafti M, Hasani J, Lebaschy MH (2021) Effect of temperature and humidity on seed germination of six different Thymus species. Iran J Seed Sci Technol 10(3):1–15. https://doi.org/10.22092/ijsst.2020.128012.1296

    Article  Google Scholar 

  • Shim SI, Moon J-C, Jang CS, Raymer P, Kim W (2008) Effect of potassium nitrate priming on seed germination of seashore paspalum. HortScience 43(7):2259–2262

    Article  Google Scholar 

  • Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology. Agr Ecosyst Environ 13(3–4):281–299

    Article  Google Scholar 

  • Thiers B (2022) Index herbariorum: a global directory of public herbaria and associated staff. New York Garden’s Virtual Herbarium. New York Garden‘s Virtual Herbarium. https://sweetgum.nybg.org/science/

  • Tohidi B, Rahimmalek M, Arzani A (2017) Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem 220:153–161. https://doi.org/10.1016/j.foodchem.2016.09.203

    Article  CAS  PubMed  Google Scholar 

  • Tohidi B, Rahimmalek M, Trindade H (2019) Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Ind Crops Prod 134:89–99

    Article  CAS  Google Scholar 

  • Tolyat MA, Tavakkol Afshari R, Jahansoz MR, Nadjafi F, Naghdibadi HA (2014) Determination of cardinal germination temperatures of two ecotypes of Thymus daenensis subsp. daenensis. Seed Sci Technol 42(1):28–35. https://doi.org/10.15258/sst.2014.42.1.03

    Article  Google Scholar 

  • Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, Ali AH, Allen AM, Attias N, Avgar T (2018) Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science 359(6374):466–469

    Article  CAS  PubMed  Google Scholar 

  • Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2019) blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol Evol 10(2):225–232. https://doi.org/10.1111/2041-210X.13107

    Article  Google Scholar 

  • Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J (2022) Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol Monogr. https://doi.org/10.1002/ecm.1486

    Article  Google Scholar 

  • Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annu Rev Environ Resour 37:195–222

    Article  Google Scholar 

  • Warren R, VanDerWal J, Price J, Welbergen JA, Atkinson I, Ramirez-Villegas J, Osborn TJ, Jarvis A, Shoo LP, Williams SE (2013) Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat Clim Change 3(7):678–682

    Article  Google Scholar 

  • White F, Léonard J (1991) Phytogeographical links between Africa and southwest Asia. Flora Et Vegetatio Mundi 9:229–246

    Google Scholar 

  • Wiebe K, Robinson S, Cattaneo A (2019) Climate change, agriculture and food security: impacts and the potential for adaptation and mitigation. Sustainable food and agriculture. Elsevier, Netherlands, pp 55–74

    Chapter  Google Scholar 

  • Wu Y-M, Shen X-L, Tong L, Lei F-W, Mu X-Y, Zhang Z-X (2021) Impact of past and future climate change on the potential distribution of an endangered montane shrub Lonicera oblata and its conservation implications. Forests 12(2):125

    Article  Google Scholar 

  • Yan X, Wang S, Duan Y, Han J, Huang D, Zhou J (2021) Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by MaxEnt. Ecol Evol 11(22):16099–16112

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang M, Sun L, Yu Y, Zhang H, Malik I, Wistuba M, Yu R (2023) Predicting the potential geographical distribution of Rhodiola L. in China under climate change scenarios. Plants 12(21):1397. https://doi.org/10.3390/plants12213735

    Article  CAS  Google Scholar 

  • Yari R, Dashti M, Zeynabi M, Parsa Mohebi SM, Azizi N (2021) Autecology study of Thymus kotschyanus in Rangeland ecosystems of Boshrouyeh city, South Khorasan province. Technol Med Aromat Plants Iran 4(1):18–32

    Google Scholar 

  • Yi Y-j, Cheng X, Yang Z-F, Zhang S-H (2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng 92:260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010

    Article  Google Scholar 

  • You JL, Qin XP, Ranjitkar S, Lougheed SC, Wang MC, Zhou W, Ouyang DX, Zhou Y, Xu JC, Zhang WJ (2018) Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci Rep 8:5879

    Article  PubMed  PubMed Central  Google Scholar 

  • Yousefi M, Jouladeh-Roudbar A, Kafash A (2020) Using endemic freshwater fishes as proxies of their ecosystems to identify high priority rivers for conservation under climate change. Ecol Ind 112:106137

    Article  Google Scholar 

  • Yousefzadeh S, Abedi R, Mokhtassi-Bidgoli A (2021) Which environmental factors are more important for geographic distributions of Thymus species and their physio-morphological and phytochemical variations? Arab J Geosci 14(18):1864. https://doi.org/10.1007/s12517-021-08253-2

    Article  Google Scholar 

  • Zare Chahouki MA, Abasi M (2016) Habitat suitability modeling for Thymus kotschyanus Boiss& Hohenusing ecological-niche factor analysis (case study: rangeland of middle Taleghan). Iran J Med Aromat Plants Res 32(4):561–573

    Google Scholar 

  • Zeraatkar A, Khajoei Nasab F (2023) Mapping the habitat suitability of endemic and sub-endemic almond species in Iran under current and future climate conditions. Environ Dev Sustain. https://doi.org/10.1007/s10668-023-03223-y

    Article  Google Scholar 

  • Zhang M, Zhou Z, Chen W, Cannon CH, Raes N, Slik JWF (2014) Major declines of woody plant species ranges under climate change in Yunnan, China. Divers Distrib 20(4):405–415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

N.H supervised the research, performed the experiment and analyzed the data. H.M and M.G. advised the research and revised the manuscript critically. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Naser Hosseini or Mansour Ghorbanpour.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Consent for publication

All authors have agreed to submit the manuscript in its current form for consideration and possible publication in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, N., Mostafavi, H. & Ghorbanpour, M. The future range of two Thymus daenensis subspecies in Iran under climate change scenarios: MaxEnt model-based prediction. Genet Resour Crop Evol (2024). https://doi.org/10.1007/s10722-024-01998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10722-024-01998-1

Keywords

Navigation