Skip to main content

Advertisement

Log in

Mapping the habitat suitability of endemic and sub-endemic almond species in Iran under current and future climate conditions

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Wild almond species are one of the main pillars of Iran's woodlands, and the land is considered one of the centers of their diversity and speciation. Predicting the impact of climate change on the distribution of wild almonds is essential for their conservation management. Here, we established a maximum entropy model (MaxEnt) to determine four Iranian Prunus species' current and future distributions under RCP 2.6 and RCP 8.5 climate scenarios in the 2050s and 2070s. As a result, the performance of all models was good or excellent according to the AUC value (≥ 80). The permutation importance showed that solar radiation, soil depth, slope, elevation, sand, and silt content were the key environmental variables influencing the potential distributions of the four species. The results showed that, in the two studied climatic scenarios, the habitat suitability of P. haussknechtii, P. lycioides, and P. scoparia had a positive range change, while the range change was negative for P. elaeagnifolia in all the above‐mentioned climatic scenarios except RCP 2.6 in the 2050s. This study highlights the need to design conservation, cultivation, and rehabilitation strategies for the species under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data are available from the authors upon reasonable request.

References

  • Abbasi, S. (2019). Persian gum (Amygdalus scoparia Spach). In S. M. A. Razavi (Ed.), Emerging natural hydrocolloids: Rheology and functions (pp. 273–298). John Wiley & Sons.

    Chapter  Google Scholar 

  • Abdelaal, M., Fois, M., Fenu, G., & Bacchetta, G. (2019). Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol Inform, 50, 68–75. https://doi.org/10.1016/j.ecoinf.2019.01.003

    Article  Google Scholar 

  • Aerts, R. (1999). Interspecific competition in natural plant communities: Mechanisms, trade-offs, and plant-soil feedbacks. Journal of Experimental Botany, 50, 29–37. https://doi.org/10.1093/jxb/50.330.29

    Article  CAS  Google Scholar 

  • Akhani, H. (2015). Iran’s environment under siege. Science, 3, 392–392. https://doi.org/10.1126/science.350.6259.392-a

    Article  Google Scholar 

  • Akhani, H., Mahdavi, P., Noroozi, J., & Zarrinpour, V. (2013). Vegetation patterns of the Irano-Turanian steppe along a 3,000 m altitudinal gradient in the Alborz Mountains of Northern Iran. Folia Geobotanica, 48, 229–255. https://doi.org/10.1007/s12224-012-9147-8

    Article  Google Scholar 

  • Aschehoug, E. T., Brooker, R., Atwater, D. Z., Maron, J. L., & Callaway, R. M. (2016). The mechanisms and consequences of interspecific competition among plants. Annual Review of Ecology Evolution and Systematics, 47, 263–281. https://doi.org/10.1146/annurev-ecolsys-121415-032123

    Article  Google Scholar 

  • Bahamin, N., Ahmadian, Sh., Rafieian-Kopaei, M., Mobini, G. H., Shafiezadeh, M., & Soltani, A. (2021). A Comparative Study on Anticancer Effects of the Alhagi maurorum and Amygdalus haussknechtii Extracts Alone and in Combination with Docetaxel on 4T1 Breast Cancer Cells. Evid. Based Complementary Altern. Med., 2021, 1–11. https://doi.org/10.1155/2021/5517944

    Article  Google Scholar 

  • Bayat, M., Bettinger, P., Heidari, S., Hamidi, S. K., & Jaafari, A. A. (2021). Combination of biotic and abiotic factors and diversity determine productivity in natural deciduous forests. Forests, 12, 1450. https://doi.org/10.3390/f12111450

    Article  Google Scholar 

  • Browicz, C. K. (1969). Distribution of Woody Rosaceae in W. Asia IV. Almonds from the section Spartioides Spach. Arbor. Kornickie., 14, 25–38.

    Google Scholar 

  • Browning, D. M., Archer, S. R., Asner, G. P., McClaran, M. P., & Wessman, C. A. (2008). Woody plants in grasslands: Postencroachment stand dynamics. Ecological Applications, 18, 928–944. https://doi.org/10.1890/07-1559.1

    Article  Google Scholar 

  • Buira, A., Fernández-Mazuecos, M., Aedo, C., & Molina-Venegas, R. (2021). The contribution of the edaphic factor as a driver of recent plant diversification in a Mediterranean biodiversity hotspot. Journal of Ecology, 109, 987–999. https://doi.org/10.1111/1365-2745.13527

    Article  Google Scholar 

  • Canton, Y., Del Barrio, G., Sole-Benet, A., & Lazaro, R. (2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. CATENA, 55, 341–365. https://doi.org/10.1016/S0341-8162(03)00108-5

    Article  Google Scholar 

  • Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026. https://doi.org/10.1126/science.1206432

    Article  CAS  Google Scholar 

  • Chen, K., Wang, B., Chen, C., & Zhou, G. (2022). MaxEnt Modeling to predict the current and future distribution of Pomatosace filicula under climate change scenarios on the Qinghai-Tibet Plateau. Plants, 11, 670.

    Article  CAS  Google Scholar 

  • Çoban, H. O., Örücü, Ö. K., & Arslan, E. S. (2020). MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability, 12, 2671. https://doi.org/10.3390/su12072671

    Article  Google Scholar 

  • Comole, A., Malan, P. W., & Tiawoun, M. A. P. (2021). Effects of Prosopis velutina invasion on soil characteristics along the riverine system of the Molopo River in North-West province. South Africa. https://doi.org/10.1155/2021/6681577

    Article  Google Scholar 

  • Craine, J. M., Towne, E. G., & Nippert, J. B. (2010). Climate controls on grass culm production over a quarter century in a tallgrass prairie. Ecology, 91, 2132–2140. https://doi.org/10.1890/09-1242.1

    Article  Google Scholar 

  • Davies, K. W., Bates, J. D., & Miller, R. F. (2007). Environmental and vegetation relationships of the Artemisia tridentate Spp Wyomingensis Alliance. Journal of Arid environments, 70, 478–494. https://doi.org/10.1016/j.jaridenv.2007.01.010

    Article  Google Scholar 

  • Djamali, M., Akhani, H., Khoshravesh, R., Andrieu-Ponel, V., Ponel, V., & Brewer, S. (2011). Application of the global bioclimatic classification to Iran: Implications for understanding the modern vegetationand biogeography. Ecologia Meditrranea, 37, 91–114. https://doi.org/10.3406/ecmed.2011.1350

    Article  Google Scholar 

  • Djamali, M., De Beaulieu, J.-L., Miller, N. F., Andrieu-Ponel, V., Ponel, P., Lak, R., Sadeddin, N., Akhani, H., & Fazeli, H. (2009). Vegetation history of the SE section of the Zagros Mountains during the last five millennia; a pollen record from the Maharlou Lake, Fars province Iran. Vegetation History and Archaeobotany, 18, 123–136. https://doi.org/10.1007/s00334-008-0178-2

    Article  Google Scholar 

  • Duduman, G., Barnoaiea, I., Avăcăriței, D., Barbu, C., Coșofreț, V., Dănilă, I., Duduman, M., Măciucă, A., & Drăgoi, M. (2021). Aboveground biomass of living trees depends on topographic conditions and tree diversity in temperate montane forests from the Slătioara-Rarău area (Romania)". Forests, 11, 1507. https://doi.org/10.3390/f12111507

    Article  Google Scholar 

  • Edsinger, E., Pnini, R., Ono, N., Yanagisawa, R., Dever, K., & Miller, J. (2020). Social tolerance in Octopus laqueus—A maximum entropy model. PLoS ONE, 15(6), e0233834.

    Article  CAS  Google Scholar 

  • Eisenman, S. W. (2015). Some nomenclatural adjustments and typifications for almond species in the genus Prunus sensu lato Rosaceae. Phytotaxa, 222(3), 185–198.

    Article  Google Scholar 

  • Elith, J., Graham, C. P., Anderson, R., Dudík, M., Ferrier, S., Guisan, A. J., Hijmans, R., Huettmann, F. R., Leathwick, J., Lehmann, A., Li, J. G., Lohmann, L. A., Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC, M., Overton, J., Peterson, A. T., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt. Diversity and Distributions, 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • FAO. (2020). The State of Food and Agriculture. Overcoming water challenges in agriculture. https://doi.org/10.4060/cb1447en

    Book  Google Scholar 

  • Fois, M., Cuena-Lombraña, A., Fenu, G., & Bacchetta, G. (2018). Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol Modell, 385, 124–132. https://doi.org/10.1016/j.ecolmodel.2018.07.018

    Article  Google Scholar 

  • Franklin, J. (2009). Mapping species distributions – spatial inference and prediction. Cambridge University Press.

    Google Scholar 

  • Frelich, L. E., Calcote, R. L., Davis, M. B., & Pastor, J. (1993). Patch formation and maintenance in an old-growth hemlock-hardwood forest. Ecology, 72, 513–527. https://doi.org/10.2307/1939312

    Article  Google Scholar 

  • Galehdar, N., Rezaeifar, M., Rezaeifar, M., & Rezaeifar, M. (2018). Antinociceptive and anti-inflammatory effects of Amygdalus eburnea shell root extract in mice. Biomedical Research and Therapy, 5, 2746–2751.

    Article  Google Scholar 

  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., & Zhang, M. (2011). The community climate system model version 4. Climate, 24, 4973–4991. https://doi.org/10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Ghahreman, A., & Attar, F. (1999). Biodiversity of plant species in Iran. Tehran University Press.

    Google Scholar 

  • Ghehsareh Ardestani, E., & Heidari Ghahfarrokhi, Z. (2021). Ensembpecies distribution modeling of Salvia hydrangea under future climate change scenarios in Central Zagros Mountains Iran. Global Ecology and Conservation, 26, e01488. https://doi.org/10.1016/j.gecco.2021.e01488

    Article  Google Scholar 

  • Gholami, M., Rahemi, M., & Kholdebarin, B. (2010). Effect of drought stress induced by polyethylene glycol on seed germination of four wild almond species. Australian Journal of Basic and Applied Sciences, 4, 785–791.

    Google Scholar 

  • Golkar, A., Nasirpour, A., Keramat, J., & Desobry, S. (2015). Emulsifying properties of Angum gum (Amygdalus scoparia Spach) conjugated to β-lactoglobulin through Maillard-type reaction. International Journal of Food Properties, 18(9), 2042–2055. https://doi.org/10.1080/10942912.2014.962040

    Article  CAS  Google Scholar 

  • Grytnes, J. A. (2003). Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography, 26, 291–300. https://doi.org/10.1034/j.1600-0587.2003.03358.x

    Article  Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Hanson, H. C., & Churchill, E. D. (1962). The Plant Community (pp. 1–218). Reinhold Publishing Corp.

    Google Scholar 

  • Hassanpouraghdam, M. B., Ghorbani, H., Esmaeilpour, M., Alford, M. H., Strzemski, M., & Dresler, S. (2022). Diversity and distribution patterns of endemic medicinal and aromatic plants of Iran: Implications for conservation and habitat management. International Journal of Environmental Research and Public Health, 19, 1552. https://doi.org/10.3390/ijerph19031552

    Article  Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather Clim. Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  • Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12, 450–455. https://doi.org/10.1111/j.1365-2486.2006.01116.x

    Article  Google Scholar 

  • Hof, A. R., Jansson, R., & Nilsson, C. (2012). The usefulness of elevation as a predictor variable in species distribution modelling. Ecological Modelling, 246, 86–90. https://doi.org/10.1016/j.ecolmodel.2012.07.028

    Article  Google Scholar 

  • Hosseini, S. H., Bibak, H., Ghara, A. R., Sahebkar, A., & Shakeri, A. (2021). Ethnobotany of the medicinal plants used by the ethnic communities of Kerman province Southeast Iran. Journal of Ethnobiology, 17, 31. https://doi.org/10.1186/s13002-021-00438-z

    Article  Google Scholar 

  • Hulshof, C. M., & Spasojevic, M. J. (2020). The edaphic control of plant diversity. Global Ecol Biogeogr, 29, 1–17. https://doi.org/10.1111/geb.13151

    Article  Google Scholar 

  • IPCC. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P.R. , Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfield T. (eds.)]. In Press.

  • Islam, K. N., Rana, L. R. S., Islam, K., Hossain, M. S., Hossain, M. M., & Hossain, M. A. (2021). Climate change and the distribution of two Ficus spp in Bangladesh–predicting the spatial shifts. Tree Forest People, 4, 100086. https://doi.org/10.1016/j.tfp.2021.100086

    Article  Google Scholar 

  • Kamer Aksoy, Ö. (2022). Predicting the potential distribution area of the Platanus orientalis L in Turkey today and in the future. Sustainability, 14, 11706. https://doi.org/10.3390/su141811706

    Article  Google Scholar 

  • Kermanshah, A., Ziarati, P., Asgarpanah, J., & Qomi, M. (2014). Food values of two endemic wild almond species from Iran. International Journal of Plant, Animal and Environmental Sciences, 4(3), 380–388.

    CAS  Google Scholar 

  • Khajoei Nasab, F., & Zeraatkar, A. (2023). Modeling the consequences of climate change on the distribution of Dionysia diapensiifolia (Primulaceae) species in Central Zagros. Third National Conference on Natural Resources and Sustainable Development in Zagros, Shahrekord, Iran.

  • Khajoei Nasab, F., & Khosravi, A. R. (2014). Ethnobotanical study of medicinal plants of Sirjan in Kerman Province Iran. Journal of Ethnopharmacology, 154, 190–197. https://doi.org/10.1016/j.jep.2014.04.003

    Article  CAS  Google Scholar 

  • Khajoei Nasab, F., Mehrabian, A., & Mostafavi, H. (2020). Mapping the current and future distributions of Onosma species endemic to Iran. Journal of Arid Land, 12, 1031–1045. https://doi.org/10.1007/s40333-020-0080-z

    Article  Google Scholar 

  • Khajoei Nasab, F., Mehrabian, A., Mostafavi, H., & Nemmati, A. (2022a). The influence of climate change on the suitable habitats of Allium species endemic to Iran. Environmental Monitoring and Assessment, 194, 169. https://doi.org/10.1007/s10661-022-09793-0

    Article  Google Scholar 

  • Khajoei Nasab, F., Mehrabian, A., & Nemati Parshkouh, A. (2022). Predicting the effect of climate change on the distribution of Echium amoenum and Echium italicum in Iran. Ijae, 10(4), 1–21.

    Google Scholar 

  • Khanum, R., Mumtaz, A. S., & Kumar, S. (2013). Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol., 49, 23–31. https://doi.org/10.1016/j.actao.2013.02.007

    Article  Google Scholar 

  • Khatamsaz, M. (1992). Flora of Iran (Rosaceae) (Vol. 6, p. 65). Research Institute of Rangeland and Forests.

    Google Scholar 

  • Kiani, S., Rajabpoor, S. H., Sorkheh, K., & Ercisli, S. (2015). Evaluation of seed quality and oil parameters in native Iranian almond (Prunus L. spp.) species. Journal of Forestry Research, 26, 115–122. https://doi.org/10.1007/s11676-014-0009-5

    Article  CAS  Google Scholar 

  • Kumar, D., Rawat, S., & Joshi, R. (2021). Predicting the current and future suitable habitat distribution of the medicinal tree Oroxylum Indicum (L) Kurz in India. Journal of Applied Research on Medicinal and Aromatic Plants, 23, 100309. https://doi.org/10.1016/j.jarmap.2021.100309

    Article  CAS  Google Scholar 

  • Liu, M. L., Sun, H. Y., Jiang, X., Zhou, T., Zhang, Q. J., Su, Z. D., Zhang, Y. N., Liu, J. N., & Li, Z. H. (2022). Simulation and prediction of the potential geographical distribution of Acer cordatum Pax in different climate scenarios. Forests, 13(9), 1380. https://doi.org/10.3390/f13091380

    Article  Google Scholar 

  • Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Mahdavi, P., Akhani, H., & Van der Maarel, E. (2013). Species diversity and life-form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains Iran. Folia Geobotanica, 48, 7–22. https://doi.org/10.1007/s12224-012-9133-1

    Article  Google Scholar 

  • Mahmoudi Shamsabad, M., Assadi, M., & Parducci, L. (2018). Impact of climate change implies the northward shift in distribution of the Irano-Turanian subalpine species complex Acanthophyllum squarrosum. J. Asia-Pacific Biodivers., 11, 566–572. https://doi.org/10.1016/j.japb.2018.08.009

    Article  Google Scholar 

  • Matsuura, T., & Suzuki, W. (2012). Analysis of topography and vegetation distribution using a digital elevation model: Case study of a snowy mountain basin in northeastern Japan. Landscape and Ecological Engineering, 9, 143–155. https://doi.org/10.1007/s11355-012-0187-2

    Article  Google Scholar 

  • Matteodo, M., Wipf, S., Stöckli, V., Rixen, C., & Vittoz, P. (2013). Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ Res Lett, 8, 024043. https://doi.org/10.1088/1748-9326/8/2/024043

    Article  Google Scholar 

  • Moeslund, J. E., Arge, L., Bocher, P. K., Dalgaard, T., Odgaard, M. V., Nygaard, B., & Svenning, J. C. (2013). Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere, 4, 91. https://doi.org/10.1890/ES13-00134.1

    Article  Google Scholar 

  • Moezi, L., Arshadi, S. S., Motazedian, T., Seradj, S. H., & Dehghani, F. (2018). Anti-diabetic effects of amygdalus lycioides spach in strep- tozocin-induced diabetic rats Iran. Journal of Pharmaceutical Research IJPR, 17, 353–364.

    CAS  Google Scholar 

  • Naghibeyranvand, M., Pilehvar, B., & Mirazadi, Z. (2019). Autecology of Sorbus Lorestanica L. as an endemic and rare species (A Case Study: GaharRood Lorestan). Ijae, 7(4), 17–29.

    Article  Google Scholar 

  • Naghipour, A. A., Asl, S. T., Ashrafzadeh, M. R., & Haidarian, M. (2021). Predicting the potential distribution of Crataegus azarolus L under climate change in Central Zagros Iran. Journal of Wildlife and Biodiversity, 5, 28–43.

    Google Scholar 

  • Negahdarsaber, M., Ahmadi, S., Jokar, L., & Abbasi, A. (2019). Investigating the effect of physiographic factors on plant diversity in wild pistachio forests in Fars province Case study: wild pistachio Research Forest. PEC, 6(13), 251–268.

    Google Scholar 

  • Nettesheim, F. C., de Conto, T., Pereira, M. G., & Machado, D. (2015). Contribution of topography and incident solar radiation to variation of soil and plant litter at an area with heterogeneous terrain. Processos e Propriedades Do Solo, 39, 750–762. https://doi.org/10.1590/01000683rbcs20140459

    Article  CAS  Google Scholar 

  • Noroozi, J., Talebi, A., Doostmohammadi, M., & Bagheri, A. (2020). Plant and vegetation. Plant and VegetationIn J. Noroozi (Ed.), Plant biogeography and vegetation of high mountains of Central and South-West Asia (Vol. 17, pp. 185–214). Springer Nature.

    Chapter  Google Scholar 

  • Padilla, F. M., & Pugnaire, F. I. (2007). Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Functional Ecology, 21, 489–495. https://doi.org/10.1111/j.1365-2435.2007.01267.x

    Article  Google Scholar 

  • Parolo, G., & Rossi, G. (2008). Upward migration of vascular plants following a climate warming trend in the Alps. Basic and Applied Ecology, 9, 100–107. https://doi.org/10.1016/j.baae.2007.01.005

    Article  Google Scholar 

  • Paulsen, H. A. (1953). A comparison of surface soil properties under mesquite and perennial grass. Ecology, 34, 727–732. https://doi.org/10.2307/1931335

    Article  CAS  Google Scholar 

  • Paź-Dyderska, S., Jagodziński, A. M., & Dyderski, M. K. (2021). Possible changes in spatial distribution of walnut (Juglans regia L.) in Europe under warming climate. Regional Environmental Change., 21(1), 18.

    Article  Google Scholar 

  • Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10(2), 102–107. https://doi.org/10.4322/NATCON.2012.019

    Article  Google Scholar 

  • Phillips, S.J., Dudík, M., & Schapire, R.E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4−8 July 2004; pp. 655–662.

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecol Modell, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Piedallu, C., & Gégout, J.-C. (2007). Multiscale computation of solar radiation for predictive vegetation modelling. Annals of Forest Science, 64, 219–228.

    Article  Google Scholar 

  • Piri Sahragard, H., Ajorlo, M., & Karami, P. (2021). Predicting impacts of future climate change on the distribution and ecological dimension of Amygdalus scoparia Spach. Italian Journal of Agrometeorology, 2, 117–130.

    Google Scholar 

  • Rajakaruna, N., & Boyd, R. S. (2008). Edaphic Factor. In E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 1201–1207). Academic Press.

    Chapter  Google Scholar 

  • Ramos, M. B., Diniz, F. C., Almeida, H. A., Almeida, G. R., Pinto, A. S., Meave, J., & Lopes, S. F. (2020). The role of edaphic factors on plant species richness and diversity along altitudinal gradi-ents in the Brazilian semi-arid region. Journal of Tropical Ecology., 36(5), 199–212. https://doi.org/10.1017/S0266467420000115

    Article  Google Scholar 

  • Rezaeifar, M., & Rezaeifar, M. (2016). Antioxidant properties of the methanolic extract of the shell root of Amygdalus eburnean. International Journal of Pharmtech Research, 9, 514–518.

    Google Scholar 

  • Saghari, M., Rostampour, M., & Mohammadi, M. A. (2020). The effect of topography on vegetative and propagation characteristics of Amygdalus scoparia in South Khorasan range ecosystems. Journal of Plant Ecosystem Conservation, 7(15), 197–215.

    Google Scholar 

  • Sagheb Talebi, K., Sajedi, T., & Pourhashemi, M. (2014). Forests of Iran, a treasure from the past, a hope for the future. Springer.

    Book  Google Scholar 

  • Scherrer, D., & Guisan, A. (2019). Ecological indicator values reveal missing predictors of species distributions. Science and Reports, 9, 3061. https://doi.org/10.1038/s41598-019-39133-1

    Article  CAS  Google Scholar 

  • Shojaee, M., Kiani, B., Sotoodeh, A., & Azimzadeh, H. (2015). Investigation of the relation between primary topographic variables with presence, frequency and quantitative characteristics of plant species and vegetation types (Case Study: Baghe- Shadi Forest, Harat, Yazd). Iran Journal of Applied Ecology, 4(11), 1–14.

    Article  Google Scholar 

  • Song, Y. G., Petitpierre, B., Deng, M., Wu, J. P., & Kozlowski, G. (2019). Predicting climate change impacts on the threatened Quercus arbutifolia in montane cloud forests in southern China and Vietnam: Conservation implications. For. Ecol. Manag., 444, 269–279. https://doi.org/10.1016/j.foreco.2019.04.028

    Article  Google Scholar 

  • Sorkheh, K., Kiani, S., & Sofo, A. (2016). Wild almond (Prunus scoparia L.) as potential oilseed resource for the future: Studies on the variability of its oil content and composition. Studies on the variability of its oil content and composition. Food Chemistry, 212, 58–64. https://doi.org/10.1016/j.foodchem.2016.05.160

    Article  CAS  Google Scholar 

  • Sorte, F. A. L., & Frank, R. T. I. I. I. (2007). Poleward shifts in winter ranges of North American birds. Ecology, 88, 1803–1812. https://doi.org/10.1890/06-1072.1

    Article  Google Scholar 

  • Sturm, M., Racine, C. H., & Tape, K. (2001). Increasing shrub abundance in the Arctic. Nature, 411, 546–547. https://doi.org/10.1038/35079180

    Article  CAS  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Michel, B., & Beaumont, L. J. (2004). Extinction risk from climate change. Nature, 427, 145–147. https://doi.org/10.1038/nature02121

    Article  CAS  Google Scholar 

  • Thuiller, W. (2003). Biomod – optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9(10), 1353–1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x

    Article  Google Scholar 

  • Wang, B., Zhang, G., & Duan, J. (2015). Relationship between topography and the distribution of understory vegetation in a Pinus massoniana forest in Southern China. Int. Soil Water Conserv. Res., 3(4), 291–304. https://doi.org/10.1016/j.iswcr.2015.10.002

    Article  Google Scholar 

  • Wani, I. A., Verma, S., Kumari, P., Charles, B., Hashim, M. J., & El-Serehy, H. A. (2021). Ecological assessment and environmental niche modelling of Himalayan rhubarb (Rheum webbianum Royle) in northwest Himalaya. PLoS One, 18(11), e0259345.

    Article  Google Scholar 

  • Wehn, S., & Johansen, L. (2015). The distribution of the endemic plant Primula scandinavica, at local and national scales, in changing mountainous environments. Biodiversity, 16(4), 278–288. https://doi.org/10.1080/14888386.2015.1116408

    Article  Google Scholar 

  • Xu, X., Ma, K., Fu, B., Song, C., & Liu, W. (2008). Relationships between vegetation and soil and topography in a dry warm river valley SW China. Catena, 75(2), 138–145. https://doi.org/10.1016/j.catena.2008.04.016

    Article  Google Scholar 

  • Yan, X., Wang, S., Duan, Y., Han, J., Huang, D., & Zhou, J. (2021). Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by MaxEnt. Ecology and Evolution, 11, 16099–16112. https://doi.org/10.1002/ece3.8288

    Article  Google Scholar 

  • Ye, P., Zhang, G., Zhao, X., Chen, H., Si, Q., & Wu, J. (2021). Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: A case study of Northwest Yunnan China. Ecol. Evol., 11, 13052–13067. https://doi.org/10.1002/ece3.7999

    Article  Google Scholar 

  • Zeng, X. H., Zhang, W. J., Song, Y. G., & Shen, H. T. (2014). Slope aspect and slope position have effects on plant diversity and spatial distribution in the hilly region of Mount Taihang. North China. J. Food Agric. Environ., 12, 391–397.

    Google Scholar 

  • Zeraatkar, A., & Khajoei Nasab, F. (2022). Forecasts of climate change impacts on the potential distribution of Acer monspessulanum in the southern Zagros. 22nd National and 10th International Congress on Biology, Shahrekord, Iran.

  • Zeraatkar, A., Ghahremaninejad, F., & Khosravi, A. (2021). Floristic study of suggested hunting-prohibited area of Dorodzan dam (Central Zagros, Iran). Rostaniha, 22(2), 230–249.

    Google Scholar 

  • Zhang, K., Liu, H., Pan, H., Shi, W., Zhao, Y., Li, S., Liu, J., & Tao, J. (2020). Shifts in potential geographical distribution of Pterocarya stenoptera under climate change scenarios in China. Ecology and Evolution, 10, 4828–4837. https://doi.org/10.1002/ece3.6236

    Article  Google Scholar 

  • Zibaeenezhad, M., Shahamat, M., Mosavat, S. H., Attar, A., & Bahramali, E. (2017). Effect of Amygdalus Scoparia kernel oil consumption on lipid profile of the patients with dyslipidemia: A randomized, openlabel controlled clinical trial. Oncotarget, 8, 79636–79641.

    Article  Google Scholar 

  • Zielinski, J. (1982). Flora Iranica Rosaceae II- Rosa, No. 152. Academic Druck, Graz, Asteria. 50 pp.

  • Zohary, M. (1973). Geobotanical Foundations of the Middle East. Vol. 1–2, Gustav Fischer Verlag Press, Stuttgart, Swets & Zeitlinger

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Khajoei Nasab.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10668_2023_3223_MOESM1_ESM.xlsx

Supplementary 1: Definition of predictors in this study. The bolded variables were selected according to the Pearsoncorrelation coefficient > |0.70| and are used for the MaxEnt model.

Supplementary file1 (XLSX 14 kb)

Supplementary file2 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeraatkar, A., Khajoei Nasab, F. Mapping the habitat suitability of endemic and sub-endemic almond species in Iran under current and future climate conditions. Environ Dev Sustain 26, 14859–14876 (2024). https://doi.org/10.1007/s10668-023-03223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-03223-y

Keywords

Navigation